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ABSTRACT

In this paper we propose an approach for building façade interpretation ranging from uncalibrated images of an image
sequence to the extraction of objects such as windows. The approach comprises several novel features, such as determi-
nation of the façade planes by robust least squares matching, learning of implicit shape models for objects, particularly
windows, and a determination of the latter by means of a Markov Chain Monte Carlo (MCMC) process employing an
abstraction hierarchy. Results for the fully automatic approach show its potential and problems.

1 INTRODUCTION

Automatic interpretation of buildings and particularly their
facçades is an area which gained some interest recently.
This is illustrated, e.g., by the special issue of “IEEE Com-
puter Graphics and Applications” (Ribarsky and Rush-
meier, 2003) comprising, e.g., (Früh and Zakhor, 2003),
where a laser-scanner and a camera mounted on a car
are employed to generate three-dimensional (3D) mod-
els of façades and together with aerial images and laser-
scanner data models of areas of cities. Photogrammetri-
cally inspired work focuses on semi-automatic approaches
(van den Heuvel, 2001), texturing (Böhm, 2004), and dis-
parity estimation (von Hansen et al., 2004) for façades.
Also in the vision community there is interest in the semi-
automatic exploitation of the special geometrical con-
straints of buildings for camera calibration (Wilczkowiak
et al., 2005).

Our goal is the automation of the whole process of façade
interpretation from video sequences, especially the extrac-
tion of objects such as windows. Concerning the detection
of façade planes we have been inspired by (Werner and Zis-
serman, 2002) as well as (Bauer et al., 2003), where Ran-
dom Sample Consensus – RANSAC (Fischler and Bolles,
1981) as well as plane sweeping is employed. Both detect
windows as objects which are situated behind the plane of
the façade.

For the extraction of regular configurations of windows,
(Wang et al., 2002) present an approach based on oriented
region growing taking into account the grid, i.e., row / col-
umn, structure of many façades. A more sophisticated ap-
proach is given by (Alegre and Dallaert, 2004), where a
stochastic context-free grammar is used to represent re-
cursive regular structures on façades. Both models are
only demonstrated for one or two rather regular high-rising
buildings and it is not really clear, if they are not too strict
for general façades.

Of particular interest for our work is (Dick et al., 2004),
which is based on a Bayesian model. The basic idea is
to construct the building from parts, such as the façades
and the windows, changing parameters, e.g., their width,

brightness, etc., in a way resulting into an appearance re-
sembling the images. The difference between the model
projected into the geometry of the images as well as the
prior information on typical characteristics of buildings
triggers a statistical process which is implemented in the
form of Reversible Jump Markov Chain Monte Carlo -
RJMCMC (Green, 1995). RJMCMC is used as it can deal
with the fact, that the number of objects changes during
processing. We also integrate prior as well as image in-
formation, but as we do not change the number of object
instances (yet), we use traditional Markov Chain Monte
Carlo – MCMC (Neal, 1993).

In Section 2 we sketch our approach to generate a Eu-
clidean 3D model from uncalibrated image sequences be-
fore determining the vertical vanishing point, the façade
planes, as well as points lying on them (cf. Section 3).
Section 4 shows how image patches around interest points
can be used to learn an implicit shape model for windows
which is employed to extract hypotheses for windows. The
latter are used to extract windows by means of MCMC on
an abstracted version of the original image generated by
means of a Dual Rank filter (cf. Section 5). The paper ends
up with conclusions.

2 3D RECONSTRUCTION AND CALIBRATION

Our approach for 3D reconstruction and calibration is aim-
ing at full-automation for wide-baseline image sequences
of rather large images. Therefore, we employ image pyra-
mids and sort out blunders via RANSAC and fundamen-
tal matrix as well as trifocal tensor (Hartley and Zisser-
man, 2003). The latter is based on highly precise con-
jugate points derived from F̈orstner points (F̈orstner and
Gülch, 1987). If the (normalized) cross-correlation coef-
ficient (CCC) is above a relatively low threshold, we de-
termine the sub-pixel precise shift by means of affine least
squares matching of all corresponding image patches.

We start by generating image pyramids, with the highest
pyramid level in the range of about100 × 100 pixels. On
this level we determine point pairs and from them funda-
mental matricesF for all consecutive pairs. The epipolar
lines derived fromF guide the matching of triplets on the
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second highest pyramid level which lead to trifocal tensors
T . With T we filter out most blunders. After determining
F as well asT with the usual linear algorithms (Hartley
and Zisserman, 2003) we do a robust, at this stage pro-
jective bundle adjustment. If the image is larger than about
1000×1000 pixels,T is also determined on the third high-
est pyramid level.

Each triplet linked byT has its own 3D projective coordi-
nate system. To link the triplets, we use the direct linear
transformation (DLT) for points mapped from the preced-
ing into the current triplet based onT . Additionally, we
integrate points into the solution, which could not be seen
in preceding triplets. After linking the triplets and includ-
ing new points we again compute a robust projective bun-
dle adjustment. When all triplets have been linked on the
second or third highest pyramid level, we track all points
through the pyramid by robust least squares matching in
all images. This results into sub-pixel coordinates for all
points in relation to a master image on the original image
size. The points are input to a final (projective) bundle ad-
justment including radial distortion.

To obtain the internal camera parameters, we use the ap-
proach proposed in (Pollefeys et al., 2004) based on the
image of the absolute dual quadricΩ∗. For the latter holds
ω∗ ∼ PΩ∗P>, with P the projection matrix for the i-th
camera andω ∼ KK>, K being the calibration matrix
comprising the internal parameters principal distance and
point as well as scale difference and skew. The idea of
(Pollefeys et al., 2004) is to impose constraints on the in-
ternal parameters, such as, that the (normalized) principal
distance usually is one with a standard deviation of, e.g.,
three, the principal point is close to the center, the skew is
very small, and there is only a small scale difference. From
it we obtain in most cases a meaningful solution which is
then finally polished via robust Euclidean bundle adjust-
ment.

Results for orientation and reconstruction consisting of
about 450 3–fold and 370 4–fold points can be seen on
the right hand side of Figure 1, showing on the left three
images from Prague’s famous Hradschin. The right angle
at the building corner has been reconstructed rather well.

3 DETERMINATION OF FAÇADE PLANES AND
THE POINTS ON THEM

Before generating façade planes, we take into account one
of the most general constraints for façades, namely being
oriented vertically. With it, we can later safely assume, that
windows or doors are rectangles oriented in parallel to the
coordinate axes. The basic idea is, that all vertical lines
are parallel in space, their projections in an image there-
fore intersecting in a specific vanishing point. Usually, the
vertical vanishing point is, depending on holding the cam-
era upright or rotated 90◦, in they- or in thex-direction.
As it is difficult to decide from the image alone, in which
of these two directions the vertical vanishing point actu-
ally lies, we input this information by means of a flag,

telling that the vanishing point is more iny- (standard) or
x-direction. Everything else is done automatically.

We start by extracting straight lines with the Burns-
operator. Hypotheses for vanishing points are found by
means of RANSAC and supporting lines are used to im-
prove the coordinates of the vanishing point via least
squares adjustment. From the best hypotheses we take the
one, which is closest to the direction in which we know the
vertical vanishing point should be. An example is given
in Figure 2. Knowing the vanishing point and the calibra-
tion matrixK from the preceding section, we can directly
compute the vertical direction in space. To improve the
quality, we compute the vertical vanishing point for more
than one image, relate the results via the known orientation
parameters of the cameras, and then compute the average.

Figure 2: Lines defining the vertical vanishing points

Hypotheses for façades are generated in the form of planes
from the (Euclidean) 3D points generated as a result of the
preceding section. To filter out the points on the planes, we
again employ RANSAC. A plane can be parameterized by
three parameters in the form of a homogeneous4-vector
and can be determined accordingly from three points. We
randomly take three points, determine a plane from them,
and then check how many points are close to that plane.
The latter needs one threshold, which depends on factors
such as the resolution of the camera, the actual planarity of
the plane (old buildings might be less planar, if at all), and
the geometry of the acquisition configuration. Therefore,
it is justified, to optimize it by hand.

Opposed to standard RANSAC, we do not just take the
best solution in terms of the number of points on the plane,
but the set of all mutually only little overlapping hypothe-
ses, starting with the best hypothesis. This is because there
might be more than one planar façade in the scene and the
corresponding planes might have common points on inter-
section lines. The latter motivates an allowed overlap of
several percent.

The obtained (infinite) planes are restricted by means of the
bounding rectangle of all points on the plane, taking into
account the known vertical direction. To further restrict
the points (pixels) on the façade and to improve the param-
eters of the plane, we use robust least squares matching.
Knowing the projection matrices for the cameras as well
as the plane parameters, we compute homographies. They
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Figure 1: Three images of wide-baseline quadruple “Prague” and result after orientation and calibration (points in red,
cameras as green pyramids;σ0 = 0.24 pixels)

allow us to transform the information supposed to be on
the given plane from all images into the same image ge-
ometry. Figure 3 shows on the left three of the four images
of the Prague scene projected in black-and-white onto one
of the façade planes, mapped into the red, green, and blue
channels. If all pixels were on the plane and there was no
radiometric difference between the images, the combined
image should be black-and-white. Colors therefore show
deviations from the plane but also in radiometry. This fact
is employed by a least squares optimization of the three
plane parameters including the elimination of outlier pix-
els, implicitly classifying the points on the plane. The re-
sult for this is given on the right of Figure 3, the black parts
lying on the façade plane, while white holes can be seen as
hypotheses for windows, doors, or other architectural el-
ements. Figure 4 shows both dominant planes computed
from about 270 and 250 supporting points, respectively,
including the holes and the 3D points.

Figure 4: The two dominant planes restricted to the areas
classified to be on the plane together with the 3D points
(red) and the cameras (green pyramids)

4 DETECTION OF WINDOWS BASED ON AN
IMPLICIT SHAPE MODEL

As can be seen from Figure 3, the detection of holes in
the regions corresponding to a façade plane comprises one
possible means to hypothesize windows. Yet, it is not ex-
tremely reliable, as windows tend to be dark with low con-
trast not generating outliers, i.e., holes. Therefore, we have
devised another means to generate hypotheses for windows
based on ideas put forward by (Agarwal et al., 2004) and
(Leibe and Schiele, 2004). Basically, use is made of the
shape of an object in the form of the arrangement or the
relations of characteristic parts, e.g., image patches. As

(Agarwal et al., 2004) and (Leibe and Schiele, 2004) we
use CCC to decide, if image patches are similar. While
(Agarwal et al., 2004) learn the angle and distance between
image patches clustered together based on the CCC to find
cars in ground-based images, (Leibe and Schiele, 2004)
employ a generalized Hough transform.

We follow the latter idea and assume that the images
have been projected onto the façade plane, are oriented
by knowing the direction of the vertical vanishing point,
and have been scaled by one factor to approximately the
same scale (± about20%). Instead of clustering the im-
age patches, we simply “learn” the shape of a window as
follows (this can be seen as a simplified version of (Leibe
and Schiele, 2004)): We cut out image parts around win-
dows. In these we extract Förstner points with a fixed set
of parameters, mark by hand the center of the window, and
then we store the difference vectors between the points and
the center as well as image patches of size13 × 13 pix-
els around the points. Eleven out of 72 windows used for
training resulting into 702 points are given in Figure 5.

To detect windows on a façade, we extract Förstner points
with the same set of parameters as above and compare the
patches of size13 × 13 centered at them with all points
learned above by means of CCC. If the latter is above a
threshold of0.8 found empirically, we write out the dif-
ference vector for the corresponding point into an initially
empty evidence image, incrementing the corresponding
pixel by one. I.e., each point (possibly multiply) votes
for the position of the window center. The points on the
façade as well as the image array with the evidence for the
position of the window centers are given for our running
example in Figure 6.

Figure 6 shows, that the evidence for the window centers
is widely spread, because some parts of the windows vote
for different positions. This is due to the fact, that a patch
can look, e.g., similar to an upper right corner of a whole
window but also of a window part. To obtain meaningful
hypotheses, we integrate the evidence for the centers by
smoothing them with a Gaussian and then determine all
maxima above a threshold. The result for this is given, e.g.,
in Figure 7, showing reasonable hypotheses. Please note,
that none of the windows used for training stems from this
scene.
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Figure 3: Three black-and-white images projected onto one of the façade planes mapped into the red, green, and blue
image channel showing radiometric differences, but also deviations from the plane (left) and pixels on the plane (right)

Figure 5: Eleven out of 72 windows used for training with Förstner points (red) and window center (yellow)

Figure 6: Façade (left) and accumulated evidence for centers of windows (right), both with Förstner points (red)

Figure 7: Accumulated evidence for window centers inte-
grated with Gaussian and maxima (red cross)

5 MCMC BASED EXTRACTION OF WINDOWS

Our extraction scheme for the extent of windows is based
on the following assumptions / experiences:

• Window panes mostly appear dark during the day

when images are taken. This is particularly true for
the red channel, because windows consist of glass,
which is more easily passed by red light, and because
the sky reflected in the windows is mostly blue.

• Most windows are at least partially rectangular with
one side being vertical to be able to open the window
easily.

• Studying a large number of windows showed that the
ratio of height to width of a window lies in the major-
ity of cases between0.25 to 5. Very narrow windows
are encountered more frequently than very wide.

• Windows are often complex objects consisting of dif-
ferent parts such as window-sills, mullions, transoms,
and sometimes also flower pots.

The latter can also be interpreted in terms of abstraction
by means of a scale-space. What we are interested into is
an object in the range of about1 × 1.5 meter width and
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height, but not the smaller details. To get rid of them, we
generate an abstract version of the object by means of a
suitable scale-space. One scale-space which was proven to
give meaningful results for this kind of problem, where ob-
jects have a stark contrast, is gray-scale morphology in the
form of opening and closing. It can be made more robust
by not taking the infimum or supremum, but, e.g., the5%
quantile, and is then termed Dual Rank filter in (Eckstein
and Munkelt, 1995). Here, we use opening with a radius
of about 10 cm eliminating dark parts followed by clos-
ing with a radius of about 25 cm eliminating bright parts
(cf. Figure 8). The opening before the closing is necessary
to avoid, that bright parts cannot be get rid of because they
are disturbed by small dark parts.

To actually extract windows, we take up the basic idea of
(Dick et al., 2004) and try to generate an image which is
at least in some respect similar to the actual image. Our
model is very simple, namely dark rectangles on a bright
background. This can be seen as the third level of an ab-
straction hierarchy consisting additionally of the original
image, and the Dual Rank filtered image (cf. Figure 8).

The model is disturbed by Gaussian noise and compared to
the actual façade image by means of CCC. For each itera-
tion of MCMC, we either change the width, the height, or
the position of the dark rectangle representing the window.
The probability is 30% for a change of width or height and
20% for a change of the horizontal or vertical position, re-
spectively. It reflects our assumption, that we know more
about the position than about the size. This is natural for a
hypotheses stemming from a procedure determining only
the center of a window, though we know the average sizes
of windows. To robustify the search, we use simulated an-
nealing. I.e., the higher the number of iteration becomes,
the lower becomes the probability to accept results which
are worse than for the preceding iteration. To optimize the
process, we do not compare the whole façade with a win-
dow but only a rectangular image part five times larger than
the average window size.

Figure 9 shows the result of the above process. Hypothe-
ses were generated in the form of relatively small squares
at the positions of the maxima of the implicit shape model
based approach proposed above, leading to a fairly reason-
able result. Further results are given in Figure 10. For both
there is room for improvement for the delineation of the
windows.

6 CONCLUSIONS

The results we have presented have been produced fully
automatically, using only very few semantically meaning-
ful thresholds, such as the planarity of walls. Yet, there is
ample room for improvement. One possible way to pur-
sue would be to make more use of the geometric regularity
of the scene, e.g., for camera calibration. We will focus
on the integration of the learned implicit shape model into
the MCMC process, using points at different image scales,
i.e., abstraction levels. We assume, that for this we will
need to form clusters for the image patches in the same

Figure 9: Result of MCMC – hypotheses (white box) and
windows (green box)

Figure 10: Further results – hypotheses (white box) and
windows (green box)

way as (Agarwal et al., 2004, Leibe and Schiele, 2004). We
also want to make use of the fact, that façades often con-
sist of regular structures in the form of rows and columns,
which will model more explicitly the abstraction hierar-
chy of façades. For this, it will be necessary to be able to
in- and exclude objects in the statistical process by means
of RJMCMC. Finally, on a wider time scale, we want to
model façades in 3D, by matching the obtained window
hypotheses in the images, e.g., by sweeping, but also by
including prominent 3D objects such as balconies.
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Figure 8: Abstraction hierarchy consisting of the original image (left), the Dual Rank filtered image (center), and the
MCMC model (right)
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