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ABSTRACT:

This paper introduces and analyses a technique that implements CFAR detection and parameter estimation of
moving targets in urban terrain. Firstly, it presents a probability distribution to use with the product model.
This model helps to account for the extremely high inhomogeneity encountered in urban terrain. Along with
the proposed distribution, the paper then discusses the numerical computation of the CFAR thresholds for an
arbitrary GMTI detection metric. For illustration, results have been generated using DPCA as the GMTI metric.

Unfortunately, having achieved CFAR for a small probability of false alarm, one finds that the probability of
detection has decreased. To counter this, we propose to increase the target SCR by using a SAR processing
filterbank where filters in the bank are designed to enhance moving targets since an increase in SCR improves
detection [11, 3]. Following the filterbank operation, we construct a master target list of redundant information
about the individual targets. This information is then exploited in a quasi-optimal manner to estimate the target
velocities and locations while filtering out false alarms that have passed the CFAR test.

1. INTRODUCTION
In many civilian and military applications of airborne and
spaceborne SAR imaging, it is highly desirable to simulta-
neously monitor ground traffic. The measurement of ob-
ject motion using SAR requires two consecutive opera-
tions. Firstly, the detection in the SAR data and, secondly,
target parameter estimation such as of location, speed and
trajectory. Target detection and estimation can either be
performed incoherently with a single SAR sensor, or co-
herently, with much higher fidelity, with two or more aper-
tures. While many authors have investigated the detection
part, the estimation part has only rarely been treated.

2. IMPLEMENTATION OF AUTOMATIC
DETECTION ALGORITHMS

The detection of moving targets hinges upon the ability to
distinguish these targets from clutter. As discussed in [9],
one way of achieving clutter cancellation is to ensure that
the clutter occupies only a well defined fraction of the
available bandwidth of the system leaving moving targets
in the remaining regions. An automatic implementation
of this algorithm involves identifying and suppressing the
clutter band. The residue data are then SAR processed
and thresholded in power [9]. With a SAR system that
oversamples in the Doppler direction, this approach can
help to increase the target SCR by applying a SAR filter
that has a Doppler bandwidth that only partly covers the
clutter bandwidth. This assumes, correctly, that moving

targets have bandwidths that also only partly cover the
clutter band [9].

With a two-aperture system, clutter cancellation can be
achieved by making use of the high correlation between
the two antenna samples. We can write the complex slow
time samples from the leading antenna and trailing an-
tenna asZ1(m) and Z2(m), respectively. If necessary,
and if the antenna samples are adequately sampled, we
can interpolate the samples from the trailing antenna so
that one estimates what it would have measured from the
the measurement positions of the leading antenna. One
thus estimatesZ2(m+∆t), where∆t is the time required
for the radar platform to move the trailing antenna into the
former position of the leading antenna. The remainder of
this paper assumes thatZ2(m + ∆t) has been estimated,
and we simply writeZ2(m) to representZ2(m + ∆t). If
the channel samples are arranged as a vector,

~Z (m) =
[
Z1(m)
Z2(m)

]
(1)

and if the covariance matrix has the form,

R =
[

σ2
1 σ1σ2ρ

σ1σ2ρ σ2
2

]
, (2)

whereσ2
1 andσ2

1 are the powers of the two antenna mea-
surements, and where0 ≤ ρ ≤ 1 is a real correlation co-
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efficient, then one method to detect the targets is to apply
the linear filter and detector

Y (m) = |~e†~Z (m)|2, (3)

where† denotes the Hermitian transpose and where the
2−element vector,~e, serves to provide a weighted sum
of the antenna samples. It should be chosen to maximise
the moving target SCR. Additionally, one can average
neighbouring samples in the data space with the effect
of reducing clutter variance (increasing SCR) at the
expense of resolution. Often, averaging is referred to as
“multi-looking”; hence, an-look sample consists of the
average ofn independent samples.

The implementation of an automatic CFAR algorithm re-
quires applying a threshold toY (m). This threshold de-
pends on the statistics of the random vectors~Z (m). The
majority of the literature considers~Z (m) to be a locally
stationary complex, zero-mean Gaussian vector1 allowing
the complex Wishart distribution of the sample covariance
matrix estimates to be applied [14, 8, 1]. We consider the
sample covariance matrix defined by

R̂ =
n−1∑
m=0

~Z (m)~Z †(m) (4)

because, as demonstrated in [11], most GMTI metrics,
such as DPCA and the ATI phase among others, are
computable from it.

In the 2-channel case, when the data from each are bal-
anced in power, the linear filter approach leads to DPCA.
It has been shown that in homogeneous terrain, DPCA is
the optimal filter for GMTI [4]. DPCA prescribes that
~e† = [1− 1], therefore,

Y =
n−1∑
m=0

|Z1(m)− Z2(m)|2. (5)

Physically, DPCA relies upon the expectation that two
time displaced measurements of a static target will
yield two identical results. Thus, after subtraction, the
metric should return zero. However, if the target does
change between measurements, for example due to a
motion-induced phase, or because of white receiver noise,
then the subtraction will yield a non-zero result.

As the difference of the two statistically dependent com-
plex Gaussian random variables in (5) is again normal dis-
tributed with zero mean and variance

σ2
∆ = σ2

1 + σ2
2 − 2ρσ1σ2, (6)

Y is χ2 distributed with density

fY (y) =
yn−1

Γ(n)σ2n
∆

exp
(
−y/σ2

∆

)
. (7)

1this corresponds to homogeneous terrain

In another approach, specific to a2-channel system, the
phase of one of the off-diagonals of the covariance ma-
trix estimate is used as a detector. The off-diagonal el-
ements are the product of one channel and the complex
conjugate of the other. The resulting quantity is referred
to as the interferogram [9]. The rationale for this approach
considers the physical differences between the two time-
delayed snapshots of the target under observation. If a
target moves through in the range direction between the
snapshots from the two apertures, then the corresponding
difference in range will manifest as a proportional differ-
ence in phase. This phase measurement divided by the
displacement time can provide an estimate of the target ra-
dial velocity. However, considering detection, since most
of the terrain has not changed, the phase difference be-
tween measurements should be zero. It should be empha-
sised that the data are not linearly filtered as in DPCA.
Implementation of the automatic phase detector requires
calculation of the phase distribution of the interferogram.
This has been done, for example, by using the complex
Wishart distribution [8]. The multi-looked interferometric
phase is computed as

δ = arg

(n−1∑
m=0

Z ∗1 (m)Z2(m)
)

. (8)

The statistical properties ofδ in homogeneous terrain have
been extensively investigated [2, 7, 8, 14].

3. MULTIPLICATIVE TEXTURE RANDOM
VARIABLE

In practice, one often encounters limitations in the model
of a stationary zero-mean Gaussian process in each
channel. Although the stationary Gaussian model is
still locally suitable, the process is not stationary when
the background reflectivity (variance) changes from
multilooked sample to multilooked sample. While it is
still valid to assume that the mean of the process is zero
and stationary, the variance must be modelled as globally
non-stationary. For instance, the variance of the SAR data
may be quite different for grassy terrain as compared to
forested terrain. In a scene containing both types (and
more) of terrain, a statistical description of the random
variance must be included to validate the model.

To this end, the introduction of a random variableA ∈
[0,∞) such thatR̂ → AR̂, leads to the so-called product
model. Many authors have studied appropriate statistical
models forA including [14, 7, 1]. This paper adopts the
inverse chi-square model,χ−2, of [1], with a generalisa-
tion to arbitrary powers,χ−2κ, κ > 0. The probability
density function forχ−2 is given by [1]

fA(a) =
Θνe−Θ/a

Γ(ν)aν+1
, a ∈ [0,∞), (9)
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whereΘ andν are the shape and degree of freedom pa-
rameters, respectively. It also has a cumulative distribu-
tion function given by

FA(a) =
1

Γ(ν)
Γ(ν,Θ/a), (10)

which can readily be computed from the characteristic
function for the gamma function presented in [13].
Imposing the constraintEA{A} = 12 introduces a de-
pendence between the two parameters of the distribution;
thereby, effectively, leaving only a single describing pa-
rameter. In the case of (9), the constraint yieldsΘ = ν−1.

In our proposed generalisation of the above random vari-
able, we make the transformationA → W = Aκ where
κ > 0. The Jacobian introduced by this transformation is
dw = κaκ−1da thus leading to a probability distribution
for W given by

fW (w) =
(ν − 1)νe

− ν−1
w1/κ

κΓ(ν)wν/κ+1
(11)

Generally, the theoretical distribution generated assuming
homogeneous conditions predicts fewer high valued
samples than are actually measured. The purpose of the
random variable,W , is thus to elongate the theoretical
probability distribution.

The introduction of the product model complicates
evaluation of closed form solutions of the theoretical
probability distributions. However, closed form solutions
can be specified for the classical techniques of ATI
and DPCA. For the ATI phase it is easy to verify that
the common multiplierW for the real and imaginary
components in (8) cancels out when the argument is
computed [2, 7, 8, 14]. In other words, the ATI phase for
the clutter is invariant against the multiplicative texture
random variable and hence, determination of the CFAR
threshold remains unchanged from the homogeneous
case.

For DPCA we have

Z = W · Y = W
n−1∑
m=0

|Z1(m)− Z2(m)|2, (12)

the pdf of (12), for the special case ofκ = 1, can be
calculated as

fZ (z) =
∫ ∞

0

1
w

fW (w)fY (
z

w
) dw

=
[(ν − 1)σ2

∆]ν

B(n, ν)
zn−1

[(ν − 1)σ2
∆ + z]n+ν

,(13)

2EX {·} denotes expectation relative toX

whereB(n, ν) = Γ(n)Γ(ν)/Γ(n + ν). Therth moment
of Z is

EZ{Zr} = [(ν − 1)σ2
∆]r

B(n + r, ν − r)
B(n, ν)

ν > r,

(14)
which can be exploited to estimate the parameterν within
a given SAR data set [2]. The cumulative probability func-
tion can be derived as

FZ (z) =
zn

n[(ν − 1)σ2
∆]n 2F1(n + ν, n;n + 1;− z

(ν − 1)σ2
∆

),

(15)

where 2F1(a, b; c; z) is the Gauss hypergeometric func-
tion, [6]. Using [10], the characteristic function can be
expressed as

φZ(s) = 1F1(n, 1− ν;−js(ν − 1)σ2
∆)

+
Γ(−ν)(−js(ν − 1)σ2

∆)ν

Γ(n + ν)
· 1F1(n + ν, 1 + ν;−js(ν − 1)σ2

∆),(16)

which is valid forν ∈ R+ by analytic continuation.

In general, closed form expressions for the pdf of arbi-
trary amplitude-dependent GMTI metrics are more elu-
sive. This paper therefore presents a method for numeri-
cally computing the distribution functions.

4. NUMERICAL METHODS FOR THE
GENERAL PRODUCT MODEL

The model for non-negative power dependent metrics
such as DPCA assumes statistical independence in the tex-
ture statistic. Let us designate an arbitrary non-negative
power dependent random variable asX . In the previous
section we hadX = Y , the random variable describing
DPCA. We seek the probability distribution forZ = WX .
SinceW > 0 andX > 0,

FZ (z) = EX {FW (z/X )}, (17)

whereEX {·} denotes expectation relative to the random
variablex , one finds that

fZ (z) = EX {fW (z/X )
1
X
}. (18)

Computation of the threshold,δz, for a CFAR de-
tector with false alarm rate PF , requires solving
1− FZ (δz) = PF .

We now focus on the chosen probability distribution for
W , namely,

FW (w) = FA(w1/κ)

=
1

Γ(ν)
Γ(ν,Θ/(w1/κ)).

(19)
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Using (18), one finds that

FZ (z) =
∫ ∞

0

Γ(ν, Θ(x/z)1/κ)
Γ(ν)

dFX (x), (20)

where, for the cases that we generally consider,
dFX (x) = fX (x)dx. Evaluation of the CFAR threshold
requires solving

PF = 1−
∫ ∞

0

Γ(ν, Θ(x/δz)1/κ)
Γ(ν)

dFX (x) (21)

for δz. Section 5. shows that

EW {W} ≡ 1 ⇒ Θ ≡
(

Γ(ν)
Γ(ν − κ)

)1/κ

, (22)

therefore, a further simplification of (21) leads to

PF = 1−
∫ ∞

0

Γ
(

ν,
[

xΓ(ν)
δzΓ(ν−κ)

]1/κ
)

Γ(ν)
dFX (x) (23)

To solve (23) one requires an estimate ofν andκ. Estima-
tion of these parameters is discussed in section 5.. Once
these parameters have been determined, numerical inte-
gration can be performed on (23) using the distribution
for X where appropriate. For example, ifX corresponds
to DPCA, we substitute the pdf for DPCA into (23) and
solve forδz [11].

5. METHOD FOR ESTIMATING TEXTURE
VARIABLE PARAMETERS

This section outlines a method for estimating the texture
variable parameters necessary for the construction of
the texture pdf. The following assumption sets up the
solution: the complex random variable measured by
each antenna of the radar is the product of a sum of
zero-mean complex Gaussian variables, each with vari-
anceσ2, and aχ−2 random variable raised to the powerκ.

Consider

Z = Aκ
n−1∑
m=0

U (m), (24)

whereU(m) = |Z1(m)|2 is the squared envelope of the
circular complex Gaussian random variable measured by
the fore antenna, andA isχ−2 distributed. Let us compute
EZ{Z r}. SinceA andU (m) are assumed to be statisti-
cally independent,

EZ{Z r} = EA{Aκr}EU
{(n−1∑

m=0

U (m)

)r}
. (25)

With eachU (m) independently identicallyχ2 distributed,
we have seen from (7) that the sum,V =

∑n−1
m=0 U (m),

has probability distribution

fV (v) =
vn−1e−v/σ2

Γ(n)(σ2)n
, (26)

with expected value

EV {V r} =
∫ ∞

0

vr vn−1e−v/σ2

Γ(n)(σ2)n
dv

=
(σ2)r

Γ(n)

∫ ∞

0

( v

σ2

)n+r−1

e−v/σ2
d

v

σ2

=
Γ(r + n)(σ2)r

Γ(n)
.

(27)

By using (9), we see that the moments ofAκ are

EA{Aκr} =
∫ ∞

0

aκrΘνe−Θ/a

Γ(ν)aν+1
da

=
Θκr

Γ(ν)

∫ ∞

0

tν−κr−1 exp(−t)dt

=
ΘκrΓ(ν − κr)

Γ(ν)
.

(28)

The second line above makes the substitutiont = Θ/a.
Requiring thatEA{Aκ} = 1 dictates thatΓ(ν) =
ΘκΓ(ν − κ), or Θ = [Γ(ν)/Γ(ν − κ)]1/κ. Substituting
(27) and (28) into (25) yields

EZ{Z r} =
σ2rΓ(n + r)

Γ(n)

[
Γ(ν)

Γ(ν − κ)

]r Γ(ν − κr)
Γ(ν)

.

(29)
For moderately heterogeneous terrain, the appropriate
choice forκ, empirically, seems to beκ = 0.5. Instances
of κ = 1 have been observed for grassy terrain mixed
with metal debris, a few trees and a few roads [5]. For
urban terrain, as considered in this paper and illustrated
in figure 2, one finds thatκ < 0.5 provides a better fit,
especially for extreme values of the random variable -
see figure 1. If the texture product model is not used,
and homogeneous terrain is assumed, then the pdf has
been shown to significantly differ from the measured
histogram, [5]. In fact, we see in figure 1 that the model
for moderately homogeneous terrain,κ = 1.0, does not
match the urban terrain histrogram very well. If the
theoretical pdf does not accurately model the histogram,
then reliable CFAR detection fails.

Solving forν involves estimating the first and second mo-
ments from the data then using (29) withr = 1 andr = 2
to create two equations with two unknowns, namely,
σ2 andν. Theoretically, if the model was perfect, (29)
could also generate three equations with three unknowns
thereby allowing the value ofκ also to be automatically
estimated from the data. The estimates ofν andκ could
then be indexed into a map of possible classifications of
terrain types to provide contextual information about the
terrain being examined.

In the case ofκ = 1, solving (29) leads to the following
estimate forν

ν̂ =
2(Î2 − Î2

1 )
Î2 − 2Î2

1

, (30)
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Figure 1. Histogram and theoretical distributions for urban
terrain.

where the estimated moments are given byÎ1 andÎ2. De-
pending on the terrain type, the general equation (29), or
the specific equation (30) can be used to automatically es-
timate the parameters of the texture random variable. Ei-
ther can be computed from a single channel of data.

6. MAXIMUM LIKELIHOOD DETECTION
AND PARAMETER ESTIMATION

As discussed in [9, 11], a moving target SCR can be
increased by applying a SAR processing filter designed to
compress moving targets rather than the stationary terrain.
These tailored filters designed under the assumption that
the target moves with constant velocity in the slant-range
plane with along-track velocityvx and slant-range veloc-
ity vy can help to detect relatively weak or relatively slow
moving targets that are rejected by a DPCA threshold that
has to account for bright stationary targets. We propose
the following: to construct a filter bank indexed by two
candidate velocity variables,̂vx and v̂y, to pass the SAR
data through each of the filters, to test for moving targets
using the aforementioned statistical model, and then
to analyse the resulting collection of target detections.
This filterbank approach provides maximum likelihood
estimates ofvy andvx as the target response maximises
at the correct choice for̂vx andv̂y.

Measured data in this paper were collected using Envi-
ronment Canada’s Convair 580 aircraft configured in its
along-track interferometric mode [9]. These data, mea-
suring a scene over West Ottawa in 2001, are illustrated
as a SAR image in figure 2.

7. ARBITRATION OF FILTERBANK
DETECTIONS

In processed SAR data, a point target impulse response
depends onvx, vy, v̂x andv̂y, andxb, the along-track po-
sition of the target when it is in the centre of the beam. For
a fixed v̂y, varying v̂x causes the target to slowly change

Azimuth (4m samples)
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10

Figure 2. SAR image of Ottawa West.

its x position (along-track dimension) while the target im-
pulse response broadens in thex-direction. Conversely,
for a fixedv̂x, varyingv̂y causes the target to move signif-
icantly in thex-direction with a decrease in the impulse
response power and only a minimal broadening due to de-
focus [9]. In both cases, only minimal broadening and
shifting occurs in they-direction (the slant-range dimen-
sion). For the sake of simplicity, let us assume that the
target response manifests at a constanty (no range migra-
tion) so that

f(x, y) = fy(xb, vx, vy;x, v̂x, v̂y) (31)

Arbitration of the filterbank detections seeks to determine
the true beam-centre location of a moving target. This
is the broadside location for a side-looking radar and
it appears at the point where the filterbank response
achieves a maximum, theoretically atv̂x = vx and
v̂y = vy. We propose to detect this maximum by using
(31) as a matched filter applied to the data produced by
the filterbank. Such a scheme provides the advantage
of automatically tracking detected targets through the
filterbank as the targets displace overv̂y. Otherwise, one
would need to locate the position of a given target in the
output of each filter, separate this target from neighbour-
ing targets, and ultimately find the filter that produced the
maximum response for the given target. In constructing
the matched filter, we choosevx = vy = xb = 0 because
the displacement and the broadening depend, mainly, on
vy − v̂y andvx − v̂x respectively.

The matched filtering of the filterbank data is readily
achieved using 3-D FFTs. Once the data have been fil-
tered, the location of a target maximum is determined by
seeking local maxima of the function defined by

xt = max̂vx,v̂yF (x, v̂x, v̂y), (32)

whereF (x, v̂x, v̂y) is the output of the matched filtering.
Figure 3 shows the location of these maxima. While some
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false alarms are still present, the image shows targets on
roads. Unfortunately, ground truthing the moving targets
over such a large area was not feasible. However, due to
non-zero values in the recorded ATI phase,|δ| > 0.15
we highlight, in figure 4 what are probably moving tar-
gets; those targets with a large negative phase have been
highlighted with a ’/’ symbol, those with a large positive
phase with a ’.’ symbol. The positive phase targets, un-
less phase wrapped, are moving away from the radar while
the negative phase targets, unless wrapped, are moving to-
ward the radar.
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Figure 3. All detected moving targets.
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Figure 4. |δ| > 0.15 moving targets, negative phase de-
noted by ’/’, positive phase denoted by ’.’.

8. CONCLUSION
The proposed pdf for the texture component of the
product model, commonly used for heterogeneous ter-
rain, fits data collected over urban areas very well. Our
paper implements this pdf and applies CFAR rules using
DPCA as the detection metric. The number of false
alarms detected seems to agree with the number predicted

theoretically. Unfortunately, achieving the CFAR reduces
the detection rate for low probabilities of false alarm.
To enhance the detection, this paper proposes to process
the SAR data with filters designed to compress non-zero
velocity targets. A filterbank indexed by two filtering
parameters, namely the candidate across-track velocity
and the candidate along-track velocity, produces a set of
target detections that we subsequently analyse to extract
estimates of the velocity and position of the targets.
Theoretically, the target power peaks at the correct choice
for the velocity parameters. This paper proposes to locate
the maximum target power over the possible filterbanks
by matching the filterbank output with the expected
trajectory of a point target through the filterbank space.
This we achieve by using a 3-D matched filter. The
output of the matched filtering is a data set in which local
maxima represent estimates of the position and velocity
of moving targets.

Future work will apply the texture pdf model of this pa-
per, but use a different GMTI detection metric. Among
the possible candidates are the hyperbolic detector and the
ATI phase as these have been shown to possess greater
probabilities of detection than DPCA in heterogeneous
terrain [11, 12].
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