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ABSTRACT:

This paper presents a new segmentation technique for LIDAR point cloud data for automatic extraction of building roof planes. Using
the ground height from a DEM (Digital Elevation Model), the raw LIDAR points are separated into two groups: ground and non-
ground points. The ground points are used to generate a ‘building mask’ in which the black areas represent the ground where there are
no laser returns below a certain height. The non-ground points are segmented to extract the planar roof segments. First, the building
mask is divided into small grid cells. The cells containing the black pixels are clustered such that each cluster represents an individual
building or tree. Second, the non-ground points within a cluster are segmented based on their coplanarity and neighbourhood relations.
Third, the planar segments are refined using a rule-based procedure that assigns the common points among the planar segments to the
appropriate segments. Finally, another rule-based procedure is applied to remove tree planes which are small in size and randomly
oriented. Experimental results on the Vaihingen data set show that the proposed method offers high building detection and roof plane
extraction rates.

1 INTRODUCTION

Automatic reconstruction of buildings from aerial imagery and
LIDAR (Light Detection And Ranging) data is a prerequisite for
many GIS (Geographic Information System) applications, such
as 3D building modelling (Zhang et al., 2005) and building change
detection (Rottensteiner, 2007).

Different approaches for building roof reconstruction have been
reported in the literature (Awrangjeb et al., 2013). In the model
driven approach, also known as the parametric approach, a pre-
defined catalogue of roof forms (eg, flat, saddle, etc) is prescribed
and the model that best fits the data is chosen. An advantage of
this approach is that the final roof shape is always topologically
correct. The disadvantage, however, is that complex roof shapes
cannot be reconstructed if they are not in the input catalogue. In
addition, the level of detail in the reconstructed building is com-
promised as the input models usually consist of rectangular foot-
prints.

In the data driven approach, also known as the generic approach
(Lafarge et al., 2010) or polyhedral approach (Satari et al., 2012),
the roof is reconstructed from planar patches derived from seg-
mentation algorithms. The challenge here is to identify neigh-
bouring planar segments and their relationship, for example, copla-
nar patches, intersection lines or step edges between neighbour-
ing planes. The main advantage of this approach is that poly-
hedral buildings of arbitrary shape may be reconstructed (Rot-
tensteiner, 2003). The main drawback of data driven methods is
their susceptibility to the incompleteness and inaccuracy of the
input data; for example, low contrast and shadow in images and
low point density in LIDAR data. Therefore, some roof features
such as small dormer windows and chimneys cannot be repre-
sented if the resolution of the input data is low. Moreover, if a
roof is assumed to be a combination of a set of 2D planar faces,
a building with a curved roof structure cannot be reconstructed.
Nonetheless, in the presence of high density LIDAR and image

data, curved surfaces can be well approximated (Dorninger and
Pfeifer, 2008).

The structural approach, also known as the global strategy (La-
farge et al., 2010) or Hybrid approach (Satari et al., 2012), ex-
hibits both model and data driven characteristics. For example,
(Satari et al., 2012) applied the data driven approach to recon-
struct cardinal planes and the model-driven approach to recon-
struct dormers. A recent update on current reconstruction tech-
niques can be found in (Haala and Kada, 2010).

This paper presents an automatic and data driven approach to the
extraction of building roof planes from LIDAR point cloud data.
The raw LIDAR points are divided into two groups using a height
threshold. The first group contains the ground points that are ex-
ploited to generate a binary building mask where buildings and
trees are found as black shapes and ground and low height ob-
jects (eg, cars, road furniture etc) are represented by white ar-
eas. The second group has the non-ground points which are seg-
mented to extract the planar segments. During segmentation, the
building mask is first divided into small grid cells (1m2 each) and
the black cells are clustered based on their locality and number of
black pixels. Each cluster indicates an individual building or tree
and non-ground points within the cluster are coarsely segmented
based on coplanarity and neighbourhood relations. The extracted
coarse segments are then refined using a new rule-based proce-
dure where common points among the segments are assigned to
the appropriate segments based on their locality and neighbour-
hood. Finally, another rule-based procedure is followed to re-
move the planes extracted on trees, which are usually small in size
and randomly oriented. The number of unused LIDAR points and
the average height difference of the points within a tree segment
are high. Experimental results show that the proposed method of-
fers high building detection and roof plane extraction rates when
applied to one of the ISPRS benchmark data sets.
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2 RELATED WORK

In this section, a review of some of the prominent data driven
methods which use raw or raster LIDAR data is presented.

Although algorithms using raster DSMs generated from the LI-
DAR data (Rottensteiner and Briese, 2003, Chen et al., 2012)
allow available image processing techniques for faster segmen-
tation, they can suffer from the decreased information in the 3D
point cloud. (Jochem et al., 2012) proposed a roof plane seg-
mentation technique from raster LIDAR data using a seed point
based region growing technique. Vegetation was removed using
the slope-adaptive LIDAR echo ratio and the approach showed
good object-based evaluation results on a large data set using a
threshold-free evaluation system.

Among the methods that fully rely on raw LIDAR data, that pro-
posed by (Perera et al., 2012) used a surface growing algorithm
(Vosselman et al., 2004) for segmentation of the point cloud.
Then, a cycle graph was used to establish the topological relation-
ship among the line segments extracted along the plane bound-
aries. This method failed in the absence of missing boundary
lines and it displayed low geometric accuracy. (Dorninger and
Pfeifer, 2008) proposed a comprehensive method for extraction,
reconstruction and regularization of roof planes using LIDAR
point clouds. Since the success of the proposed automated pro-
cedure was low, the authors advised manual pre-processing and
post-processing steps. In the pre-processing step, a coarse se-
lection of building regions was accomplished by digitizing each
building interactively. In the post-processing step, the erroneous
building models were indicated and rectified by means of com-
mercial CAD software. Moreover, some of the algorithmic pa-
rameters were set interactively.

(Sampath and Shan, 2010) presented a solution framework for
segmentation (detection) and reconstruction of polyhedral build-
ing roofs from high density LIDAR data. Similar to the method
in (Verma et al., 2006), the coplanarity of points was determined
based on eigenvalue analysis using the Voronoi neighbourhood
around each point. The normal vectors were then clustered via the
fuzzy k-means algorithm. Good evaluation results for both seg-
mentation and reconstruction were achieved. However, due to the
removal of LIDAR points near the plane boundaries, the method
exhibited high reconstruction errors for small planes. Further-
more, the fuzzy k-means clustering algorithm is computationally
expensive (Khoshelham et al., 2005). (Kim and Shan, 2011) also
segmented the normal vectors, but they applied a multiphase level
set technique. (Tarsha-Kurdi et al., 2008) applied an extended ro-
bust estimation technique on the regenerated LIDAR point cloud.
After converting the original point cloud into a DSM, the miss-
ing points were estimated as the mean of the neighbouring points.
Then a low-pass filter was applied and the raster point cloud was
converted to the raw point cloud. As a result, the regenerated
points suffered from decreased positional accuracy. Moreover,
the method could not construct planes of less than 50m2. (Sohn
et al., 2008) clustered building points first based on height simi-
larity and then on planar similarity. They then extracted rectilin-
ear lines and generated polyhedral models from the lines using a
binary space partitioning tree. The method produced erroneous
results due to improper localisation of the extracted lines or to
missing lines. In addition, it failed to separate small roof planes
in the clustering algorithm due to use of a predefined bin size
for the height histogram. The main problem with methods us-
ing LIDAR data is that the planimetric accuracy is limited by the
LIDAR point density.

Figure 1: The proposed roof plane extraction technique.

3 PROPOSED ROOF EXTRACTION APPROACH

Figure 1 shows an overview of the proposed building roof ex-
traction procedure. The input data consists of raw LIDAR data.
In the detection step (top dashed rectangle in Figure 1), the LI-
DAR points are classified into two groups: ground points, such
as ground, road furniture, cars and bushes that are below the
threshold, and non-ground points, which represent elevated ob-
jects such as buildings and trees. The building mask, known as
the ‘ground mask’, is generated using the ground points (Awrang-
jeb et al., 2010). Individual buildings and trees are obtained as
clusters of black pixels in the building mask and trees with low
density canopies are removed. The coplanarity of each individ-
ual non-ground LIDAR point is decided based on its Delaunay
neighbourhood. The planar segments are extracted from the non-
ground LIDAR points on individual buildings and trees. The
extracted LIDAR segments are then refined using a newly pro-
posed rule-based procedure. Finally, the false planes on trees are
removed using information such as area and neighbourhood, as
well as any point spikes within the planar boundary.

Figures 2a presents a sample scene from the Vaihingen data set
(Cramer, 2010), which will be used to illustrate the different steps
of the proposed extraction method. The LIDAR point density in
the Vaihingen data set varies from 4 to 6.7 points/m2 (Rotten-
steiner et al., 2012).

3.1 Point Classification and Building Detection

For each LIDAR point, the corresponding DEM height (gener-
ated from the LIDAR data) is used as the ground height Hg . A
height threshold Th = Hg + 1.0m is applied to divide the LI-
DAR points into two groups: ground points such as ground, road
furniture, cars and bushes that are below the threshold, and non-
ground points that represent elevated objects such as buildings
and trees. The primary or building mask Mg , as shown in Figure
2b, is generated using the ground points following the procedure
in (Awrangjeb et al., 2010). The mask Mg indicates the void ar-
eas where there are no laser returns below Th, ie, ground areas
covered by buildings and trees. It can be compared to the normal-
ized DSM (nDSM), which indicates the filled areas, from where
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Figure 2: A sample scene from the Vaihingen data set: (a) raw
LIDAR points overlaid on an orthoimage, (b) building mask and
non-ground LIDAR points, (c) grouping and clustering of the
mask grid cells, and (d) clusters of non-ground LIDAR points
on buildings and large trees.

the laser reflects, above the same threshold. However, it has been
shown that buildings and trees are found to be thinner in Mg than
in nDSM (Awrangjeb et al., 2012b).

The mask Mg is divided into 1m2 grid cells. Figure 2c shows the
grid, whose cells can be categorized into three groups. The cells
in Group A shown in magenta coloured dots in Figure 2c, con-
tain only black pixels and represent the areas inside the building
or tree boundaries. In contrast, the cells in Group B (shown in
cyan) contain both white and black pixels and represent the ar-
eas along the building and tree boundaries. The cells in Group
C contain only white pixels and represent the ground. Group A
cells are now separated into clusters, where any two Group A
cells in each cluster are connected by other Group A cells be-
longing to the same cluster. As shown in Figure 2c, there are 5
such clusters in the sample scene. Thereafter, the Group B cells
along the building boundary are added to each of the clusters.
Each of the added Group B cells should have at least one Group
A cell as its neighbour in the cluster. Finally, for each of the
clusters, the cluster boundary is obtained using the Canny edge
detector. Lines along the boundary are also extracted following
the procedure in (Awrangjeb and Lu, 2008). These lines help
to locate the roof planes near the building boundary. The non-
ground LIDAR points within the cluster boundary are assigned
to the cluster. Figure 2d shows the clusters, their boundaries and
non-ground LIDAR points for the sample scene.

The clustering technique described helps in the elimination of
trees which are not dense (eg, tree at the bottom of Figure 2)
and/or small in area. In addition, dense vegetation can be sep-
arated into small parts (eg, trees at the top-left corner of Figure
2). In a small vegetated area (eg, Cluster 4 in Figure 2d), it will
be impossible to construct a large plane. Thus many planes con-

Figure 3: Planar segments from Cluster 1 in Figure 2d: (a) ex-
tracted and (b) refined.

structed on trees can be easily removed by applying the minimum
plane size (see Section 3.3).

3.2 Extraction of Planar Segments

By using the Delaunay triangulation algorithm, a natural neigh-
bourhood of non-ground LIDAR points can be generated for ei-
ther one cluster at a time or all non-ground points at the same
time. The neighbourhood of a point P consists of the points Qi,
1 ≤ i ≤ n, where each line PQi is a side of a Delaunay triangle.
In order to avoid points which are far away the following condi-
tion is applied: |PQi| ≤ 2dmax, where dmax is the maximum
point spacing in the data. The coplanarity of P is decided using
its neghbouring points following the procedure in (Sampath and
Shan, 2010). Points within a roof plane are found to be coplanar
and those along the boundary of a plane are generally found to be
non-coplanar.

For each cluster, let the two sets of the non-ground LIDAR points
be S1 containing all the coplanar points and S2 containing the rest
(non-coplanar). The first planar segment can now be initialised
using a coplanar point P ∈ S1. Initially, P can be located along
the cluster boundary using the extracted boundary lines. This new
planar segment is extended using the neighbouring points from
S1 and S2. Once its extension is complete, all the coplanar points
in the extended planar segment are marked so that none of them
is later used for initiating another planar segment. As a result,
the points in S2, which mainly reside along the plane boundaries,
can be used by more than one extracted plane. The second planar
segment is grown by using an unused coplanar point (from S1)
which may also be located along the boundary lines. Later, when
no coplanar points are found along the boundary lines, an unused
coplanar point is randomly selected and a new planar segment is
grown. The iterative procedure continues until no coplanar point
remains unused.

Figure 3(a) shows all the extracted planes from Cluster 1 of Fig-
ure 2d. There were 14 extracted planes. Many of the extracted
planes overlap the neighbouring planes, ie, there may be many
common points between two neighbouring planes. Most impor-
tantly, one of the planes has been wrongly extracted, as shown
by red dots in Figure 3(a). This wrong plane was initialised by
a coplanar point near to the ridge of two planes. As shown in
the magnified part in Figure 3(a), the neighbours of the copala-
nar points reside on the two neighbouring planes. Consequently,
the wrongly extracted plane included points from a total of six
planes.

In order to refine the extracted planes, let P be a point between
two neighbouring planes that may be coincident, parallel or non-
parallel. The following rules are applied to decide the common
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Figure 4: Removal of false planes: (a) all extracted planes, (b)
all plane boundaries, (c) final plane boundaries, and (d) building
boundaries.

points. First, two coincident planes which share the majority of
the plane points are merged. Second, for two parallel planes P is
assigned to the plane with which it has a smaller normal distance.
Third, for two non-parallel planes, if P is coplanar then two an-
gles are estimated between its normal and the two plane normals.
P and its neighbours are then assigned to the plane with which
the angle is smaller. Fourth, P can also be assigned based on its
locality, ie, assign to the nearest plane. Finally, assign the remain-
ing common points using the plane intersection line.

Figure 3(b) shows the planar segments after refinement. Figures
4a-b show all the extracted planar segments and their boundaries
on the sample scene shown in Figure 2a.

3.3 Elimination of Trees

In order to remove false-positive planes, mostly constructed on
trees, a new rule-based procedure is proposed. For an extracted
LIDAR plane, its area, straight line segments along its boundary,
and neighbourhood information, as well as any LIDAR spikes
within its boundary, are used to decide whether it is a false alarm.
For a given point on the extracted LIDAR plane, the mean height
difference with its neighbouring points is also used. This height
difference is large for a tree plane, but small for a roof plane. The
average height difference for a plane is estimated from individual
height differences within the plane. A LIDAR plane fitted on a
tree is usually small in size and there may be some LIDAR spikes
within its boundary. Moreover, there may be a large number of
unused (ie, not on any of the extracted planes) LIDAR points
within the boundary of a tree plane. The number of points used
by the extracted planes is usually low on a tree cluster, but high on
a building cluster. Moreover, there may be some long straight line
segments (at least 3m long) along the boundary of a roof plane.

The proposed rule-based procedure works as follows: First, planes
smaller than 1m2 are removed. Second, a random point test is

Table 1: Building detection results for the Vaihingen (VH) data
set. Object-based: Cm = completeness and Cr = correctness
(Cm,50 and Cr,50 are for buildings over 50m2) in percentage.
Pixel-based: Cmp = completeness and Crp = correctness in per-
centage. Geometric: Rb = planimetric accuracy in metre.

Areas Cm Cr Cm,50 Cr,50 Cmp Crp Rb

VH 1 83.8 96.9 100 100 92.7 88.7 1.11
VH 2 85.7 84.6 100 100 91.5 91 0.83
VH 3 78.6 97.8 97.4 100 93.9 86.3 0.89
Average 82.7 93.1 99.1 100 92.7 88.7 0.94

carried out following the procedure in (Awrangjeb et al., 2012a)
and planes which show point spikes are removed. If the esti-
mated height for a random point is smaller than 1.5m of the min-
imum plane height or larger than 1.5m of the maximum plane
height then the point is a spike. Third, the ratio r of the number
of the unused LIDAR points to the number of the used LIDAR
points is calculated. If r ≥ 10% for a small plane (1 to 5m2) or
if r ≥ 35% for a medium plane (5 to 15m2), then this plane is re-
moved. Fourth, if the average height difference within a plane is
high (more than 0.8m) then the plane is removed. Fifth, the ratio
ru of the number of the used LIDAR points to the total number of
the non-ground LIDAR points within a cluster boundary is calcu-
lated. If ru < 60% then all the surviving planes belonging to this
cluster are further tested. If a plane does not have a long straight
line segment along its boundary and its width is less than 1m,
then this plane is removed. Finally, medium size planes that are
neighbours of other planes that have already been removed are
also removed if they have unused LIDAR points and high aver-
age height difference. Figure 4c shows all the roof planes found
after the plane removal procedure for the sample test scene.

An individual building can now be easily obtained as a group of
planes. All the LIDAR points from the group of planes are used
together to extract the corresponding building boundary. A binary
mask is formed using these points and the boundary of the build-
ing is the Canny edge around the black shape in the mask. The
height of the nearest LIDAR point of the building is assigned to
each edge point. Figure 4d shows the extracted building bound-
aries.

4 EXPERIMENTAL RESULTS

The Vaihingen (VH) data set (Cramer, 2010) from the ISPRS
benchmark test (Rottensteiner et al., 2012) has been used in an ex-
perimental assessment and validation of the proposed roof plane
extraction approach. There are three test sites in the VH data set.
Area 1 is characterised by dense development consisting of his-
toric buildings having complex shapes. Area 2 is characterised
by a few high-rise residential buildings surrounded by trees, and
Area 3 is purely residential with detached houses and many sur-
rounding trees. The number of buildings (larger than 2.5m2) in
each of the these three areas are 37, 14 and 56, respectively, and
the corresponding number of planes are 288, 69 and 235.

The results were evaluated using a threshold-based evaluation
system (Rutzinger et al., 2009) and confirmed by the ISPRS com-
mission III, Working Group 4.1 In the reference building sets,
there were buildings which were as small as 2.5m2.

Figure 5 shows the building detection and roof plane extraction
results for Area 1 of the VH data set, and Table 1 summarizes
the building detection results for all three areas. Since the pro-
posed algorithm missed some small buildings in all areas, the

1http://www2.isprs.org/commissions/comm3/wg4/tests.html.
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Figure 5: Building detection (a) and roof extraction results (b) on
Area 1 of the VH data set.

results for each area are similar both in object- and pixel-based
evaluation. However, the large buildings were correctly extracted
as evident from the completeness, correctness and quality indices
for buildings over 50m2. This is also indicated by the pixel-based
completeness, correctness and quality which are higher than their
object-based counterparts. A large building in the top-middle of
Area 3, although detected partially due to information missing in
the LIDAR data, was found false negative by the evaluation sys-
tem. That’s why the completeness value for buildings larger than

Table 2: Roof plane extraction results for the Vaihingen (VH)
data set. Object-based: Cm = completeness and Cr = correct-
ness (Cm,10 and Cr,10 are for planes over 10m2) in percent-
age; Se = segmentation error (1 : M over-segmentation / N : 1
under-segmentation / N : M both over- and under-segmentation)
in number of planes; Rp = planimetric accuracy and Rz = height
error in metre.

Areas Cm Cr Cm,10 Cr,10 Se Rp Rz

VH 1 76.4 83.3 84.4 84.9 6/42/7 1.05 0.41
VH 2 73.9 91.9 93.8 92.6 7/3/1 0.74 0.37
VH 3 82.1 93.9 92.7 96.7 5/45/0 0.89 0.27
Average 77.5 89.7 90.3 91.4 6/30/2.7 0.89 0.35

50m2 in Table 1 is not 100% for Area 3. The under-segmentation
cases occurred when the nearby buildings were found merged to-
gether. In Area 3, car ports were merged with the neighbour-
ing buildings. This unexpected merging could be avoided by
analysing white pixels in between the black shapes in the build-
ing mask (Section 3.1). The planimetric accuracies were close to
the distance of 1 to 2 times of the maximum point spacing in the
input LIDAR data.

Table 2 shows the roof plane extraction results. In the VH data
set, the proposed algorithm performed better on Area 3 which
comprised mainly residential buildings, with less vegetation. For
all three areas, there were many under-segmentation cases where
small roof structures could not be separately extracted, but might
be merged with the neighbouring large planes, and some low
height roof structures were missed.

5 CONCLUSION

A new LIDAR point cloud segmentation algorithm has been pro-
posed for automatic extraction of 3D building roof planes from
the raw LIDAR data. Firstly, the raw LIDAR data is divided into
ground and non-ground points and a building mask is generated
from the ground points. The black areas in the building mask rep-
resent the covered areas on the ground where no laser returns be-
low a certain height. The building mask is divided into 1m2 grid
cells and the black cells are clustered such that each cluster repre-
sents an individual building or tree. The non-ground points within
a cluster are then coarsely segmented based on their coplanarity
and neighbourhood relations. The planar segments are refined us-
ing a rule-based procedure where common points between planar
segments are assigned to the appropriate planes based on the rela-
tionship between the neighbouring planes and the locality of the
points. Finally, a new rule-based procedure is applied to remove
tree planes which are small in size and randomly oriented. In ad-
dition, within the area of an extracted plane on a tree, the average
LIDAR height difference and the number of unused (not used for
plane estimation) LIDAR points are usually high.

It has been shown via experimental testing that the proposed al-
gorithm affords high building detection and roof plane extraction
performance. It is not only capable of detecting small buildings
but can also extract small roof planes on complex building roofs.
Moreover, in most cases it can separate buildings which are sur-
rounded by dense vegetation.

However, due to use of LIDAR data only, the planimetric accu-
racy of the proposed method is limited by LIDAR point density.
Boundaries of the extracted planar segments are not smoothed.
Future work will focus upon an integration of the available im-
agery with the LIDAR data so as to afford better planimetric ac-
curacy. It will also look at development of a regularisation pro-
cedure to smooth the plane boundary. The integration of image
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data will also help for better object extraction where LIDAR in-
formation is missing.
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