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ABSTRACT:

Scene analysis, in urban environments, deals with street modeling and understanding. A street mainly consists of roadways, pavements
(i.e., walking areas), facades, still and moving obstacles. In this paper, we investigate the surface modeling of roadways and pavements
using LIDAR data acquired by a mobile laser scanning (MLS) system. First, road border detection is considered. A system recognizing
curbs and curb ramps while reconstructing the missing information in case of occlusion is presented. A user interface scheme is also
described, providing an effective tool for semi-automatic processing of large amount of data. Then, based upon road edge information,
a process that reconstructs surfaces of roads and pavements has been developed, providing a centimetric precision while reconstructing
missing information. This system hence provides an important knowledge of the street, that may open perspectives in various domains
such as path planning or road maintenance.

1 INTRODUCTION

Understanding a street scene is a major issue in the field of auto-
matic information processing. Indeed, a street scene may be com-
posed of a variety of elements, making its processing challenging.
Still components (buildings, trees, road, pavements, posts. . . ) as
well as mobile entities (vehicles, people, thrash bin. . . ) may be
encountered, and each street scene is a unique combination of
common/unexpected elements. This challenging field is of huge
interest and could bring important advances in various fields such
as autonomous vehicles, video surveillance, traffic simulation or
public domain maintenance.

Street ground modeling consists of several tasks. The detection
of curb is here a crucial step, defining the frontiers between road
and pavements (i.e., walking areas). Once curbs are located, the
issue is to model the surface of roads and walking areas.

3D curb detection has first been investigated in the context of
computer vision, where 3D information is computed using stereo-
scopic images (Floros and Leibe, 2012) (Siegemund et al., 2011)
(Oniga and Nedevschi, 2010). Despite the real interest of some
of the proposed methods, 3D information extracted from stereo-
scopic images remains highly uncertain whereas LIDAR produces
a direct and precise 3D information. Besides, vision systems suf-
fer from unfavorable light or weather conditions, i.e, overcast sky,
sun glare, shadows. . .

The reliability of the 3D information produced by LIDAR sen-
sors is adapted to street modeling. Several approaches have been
developed for curb detection with LIDAR data.

Stückler et al. (Stückler et al., 2008) proposed a LIDAR-based
detection of curbs dedicated to in-lane localization. They used
GPS waypoints and road models to get a knowledge of lane width
in order to produce a model of expected curbs. The system then
attempts to reduce the offset between the model and the observed
curbs. LIDAR information is first transformed into height images
where curbs detection is done by edge filters. Then, an Iterative
Closest Point (ICP) algorithm is used to minimize the sum of the

observed offsets. Wijesoma et al. (Wijesoma et al., 2004) also
proposed a road edge detection method requiring approximate
road width at the successive positions (given by a GPS). Road
area detection was here processed by a Kalman filtering method
that tracks the two road sides. However, those methods require
a additional knowledge on the road, i.e., about the road width at
some precise positions.

LIDAR-only road side detection method were also proposed in
(Maye et al., 2012)(Zhang, 2010)(Zhou and Vosselman, 2012).
Maye et al. (Maye et al., 2012) described a method where a piece-
wise planar model is used to process the ground. Here, a Digital
Elevation Map processed on the LIDAR measurements is divided
in cells. Each of these cells was then handled using a Conditional
Random Fields algorithm. An Expectation-Maximization algo-
rithm for planar mixture model enabled to get the corresponding
piecewise planar model. Curbs were then defined by the lim-
its between plane segments. These last road boundary detection
method (see also (Hernàndez and Marcotegui, 2009) (McElhin-
ney et al., 2010) (Han et al., 2012) does not reconstruct the miss-
ing information (mainly in case of occlusions).

A recent work by Yang et al. (B. Yang, 2013) describes a method
that handle occlusions. Road sides are first detected using a mov-
ing window process through successive road cross section. These
results are later refined using a local similarity rule.

Our aim is to propose a method for detecting curbs and curb
ramps that does not require any additional knowledge than LI-
DAR point clouds and that reconstructs curbs when information
is not available. Moreover, we wish to process the surface of
roads as well as walking areas using a simple and exportable
model and that efficiently reconstructs the ground when not avail-
able in the LIDAR data. Our wish is also to get a method that
allow efficient processing of large amount of data, so that an op-
erator might be requested in tricky steps.

The rest of the paper is structured as follows. Section II presents
the proposed approach, describing the road edge detection algo-
rithm and then introducing the surface modeling process. In sec-
tion III, experiments and results are described.
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2 OUR APPROACH

This section is divided in two parts, the first one describes the
curb detection process while the second one is dedicated to sur-
face modeling of roads and walking areas.

2.1 Road side detection

This subsection is dedicated to the curb and curb ramps detection.
First the considered feature map is presented, then the detection
process is described. Lastly, a semi-automatic scheme helping
to handle problematic situations is proposed to handle efficiently
large amount of data. The core of this first part of the method was
previously described in (Hervieu and Soheilian, 2013), where fur-
ther descriptions of the process may be available. Road side de-
tection results are later used in this paper to model and reconstruct
roads and pavements (Section 2.2).

2.1.1 Angular distance to ground normal map

LIDAR data have been processed to compute the angular distance
to ground normal θ. If z is the normalized normal to the ground
(i.e., the unitary orientation vector of height coordinates) and Vp

the normal vector at a given point p, θ = arccos(Vp · z).

The direction of the normal vector Vp is so that Vp · z > 0, i.e.,
the normal vector is always oriented within the same half-space
than z and hence θ ∈ [0, Π

2
]

This feature describes the curb 3D pattern that we wish to retrieve
(see Fig. 1). It enabled us to distinguish curb pattern such as the
ground, facades or stairs of higher heights.
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Figure 1: Four different profile patterns depicted here in 2D for
better understanding. (a), (b), (c) and (d) schemes respectively
represent a stair, a facade, the ground and a road side (usually
lower than a stair). The red arrows correspond to computed nor-
mals whereas the green one is the z vector. Blue points are
LIDAR points, the red line denotes the estimated plane (using
RANSAC) based on the LIDAR points within the blue circle. The
yellow arrow is the θ feature, i.e., the angle deviation with the z
vector.

As shown in Fig. 1, a radius value parameter R (R was set to
0.2 meters) is required. R defines an area around the point p (the

Figure 2: The θ feature map.

blue area in Fig. 1) where all points are taken into account to fit a
plane (least-square fitting). The normal Vp at p is computed, and
θ is the difference of angle with z the normal to the ground.

Depending on the distance to the LIDAR sensor and on the speed
of the MLS velocity, the density of points may vary importantly
within the point cloud. A post-processing scheme that handle
changes of point densities is set up. Fig. 2 illustrates the feature
map processed on a road curve.

2.1.2 Prediction/Estimation model

To process the feature map, a prediction/estimation model was
designed. The goal is first to detect road edges in the (x, y) plane
(2D top view). The processing requires an initialization. This is
an ordered sequence of points (or a line in the top view (x, y) 2D
map, selected manually) that indicates the direction of the curb
processing.

In the rest of the section, we denote by Xk the result of the pro-
cessing at time k. Xk is the state vector such thatXk = (xk, yk).
The studied model is divided in three steps which are described
separately: the prediction step, the observation selection step and
the result step. It was inspired by Kalman models. However,
as the prediction step relies on several previous results, some
properties of classical Kalman filters do not hold (for covari-
ance and Kalman gain especially). Fig. 3 illustrates the succes-
sive steps used to obtain result Xk+1 from the previous results
{Xt}t=1,...,k.

prediction step

Let Pk+1 be the prediction of the model at time k + 1, we have

Pk+1 = f({Xt}t=k−Np−1,...,k, D, δ) (1)

f denotes the process that provides the prediction using the Np

previous results {Xt}t=k−Np−1,...,k and the parameters D and
δ. A polynomial curve C of degree D was used to fit the Np (Np

was set to 3) previous results {Xt}t=k−Np−1,...,k of the process.
Then, the curve C was used further to get the prediction relying
on δ, a parameter that defines the distance between the previous
result Xk and the current prediction Pk+1 (δ was around 0.5 me-
ters). The resulting prediction Pk+1 is found by selecting the
point distant of δ from the previous resultXk when following the
curve C. It is illustrated in Figs. 3(b) and 3(c).

observation selection step

LetOk+1 be the selected observation of the process at time k+1.
Let us define Ap and A′p two areas around a given point P , re-
spectively relying on two radius parameters r and r′ (In practice,
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Figure 3: The road side detection steps from time k to time k+1.
(a) LIDAR points and previous results xk−4, . . . , xk. (b) poly-
nomial fitting by a curve C (c) selection of the prediction Pk+1.
(d) APk+1 the search area around Pk+1. (e) selection of the best
observation Ok+1 (f) new result xk+1.

we set r and r′ to 0.25 meters and 0.1 meters respectively). Ok+1

was selected within the areaAPk+1 . In Figs. 3(d), (e),APk+1 are
depicted by a orange circle. Ok+1 is chosen by:

Ok+1 = g(Pk+1, θcurb, r, r
′) (2)

where

g(Pk+1, θcurb, r, r
′) = arg max

i∈APk+1

Wi

= arg max
i∈APk+1

(
∑
j∈A′

i

N (dis(i, j), 0, σ1)N (θi, θcurb, σ2) )

(3)

g denotes the process that selects an observation relying on the
prediction Pk+1 and three parameters θcurb, r and r′.

θcurb is the representative θ value of a classical curb (regarding
the radius value parameter R, see section 2.1.1). In the exper-
iments, θcurb value was 20 degree. Ai is the area around the
point i of radius r. N (a, b, σ) denotes the value at a position a
of a Gaussian function centered in b and of standard deviation σ.
dis(i, j) is the distance between points of index i and j. σ1 and
σ2 are deviation parameters set to 5 cm and 5 degree. Such a
model helps in selecting an observation for which its own feature
value and the close (thanks to σ1) neighborhood feature values
are close to parameter θcurb (thanks to σ2). θcurb, σ1 and σ2

respectively correspond to angle, distance and angle values, and
hence don’t depend on the observed scene. Also, if density is
high, the radius parameter value R is constant for areas close to
the laser and hence θcurb parameter stands. Fig. 4 describes the
observation selection process. In Fig. 3(e), the selected observa-
tion Ok+1 verifying Eq. 3 is depicted in brown.

result step

The resulting road curb localization is a weighted mean of the
prediction and the selected observation:

Xt+1 = (1− α(WObs)) . Pt+1 + α(WObs) . Ot+1 (4)

where WObs = maxi∈APk+1
Wi (Wi is defined in Eq. 3).

The function α(WObs) characterizes the reliability given to se-
lected observation regarding the model predictions. It was de-
fined by a parameter S that correspond to a multiplying factor

Figure 4: Description of the observation selection step. The blue
points are the LIDAR points, and the darker blue they are, the
closer of θcurb they are. The A′p regions are the regions within
which points are used to compute Wp (see Eq. 3) and are shown
for three points j1, j2 and j3. Among all the points in APk+1 , j3
is the chosen observation.

(S value was set to 1.5) of WObs. As soon as WObs is higher
than 1

S
, α(WObs) is equal to 1 and the model only follows the

observation:

α(WObs) =

{
S . WObs if S . WObs < 1
1 otherwise

If no observation is available, i.e., in case of an occlusion, the
model follows the prediction until it founds a new observation.
In addition, as long as the process is located in an occluded part
of the point cloud, the radius parameter r that defines the obser-
vation 3D search area is increased by a multiplying parameter
M at each time step until it reaches a limit LM (In practice, M
value was 1.125 and LM value was 0.5 meters). When a new
observation is found, the r parameter is set to its initial value. In
the case of curb ramps, selected observations have a feature value
θobs which is far away from the parameter value θ. Hence, these
observations have little influence on the weighted result from pre-
diction to selected observation, and the model still (mainly) fol-
lows predictions.

curb ramp detection

Curb ramps are detected using a sliding window process on the
detected road sides. The size of the sliding window corresponds
to Ktot successive results (Ktot set to 9). If at least Kmin values
of θobs in the sliding window are below a given parameter θmin,
a curb ramp is detected (Kmin and θmin were respectively set to
6 and 24).

2.2 Road and pavement surface modeling

The sides of the road from both right and left, detected using the
method described in the previous sections, are now used to model
surfaces of both road and pavements. The surface modeling pro-
posed in this section is based upon street slices. To find this initial
slice direction, the first road side point of one of the two sides is
taken as reference. The process looks for the closest road side
point on the other side, and the first slice is the line that passes
threw these two points. Then, LIDAR points that are close to the
street slice (closer than 20 cm here) in the top view are kept to
approximate the local surface. Points used to approximate the
road are located between the two side roads in the top view while
the other ones are used to model whether right or left pavements.
This is presented in Fig. 5. A RANSAC procedure is applied
on the height values of those points, projected in the plane that
contains the slice line and that is perpendicular to ground. As
long as ground points are majoritary, using a RANSAC scheme
to estimate surface helps eliminating objects on the road. The
surface is modeled using a polynomial of degree n (n is equal to
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Figure 5: Points of the road around the slice in light blue. Points
of a walking area around the slice in deep blue. Road and walking
area surface modeling respectively in purple and yellow.

Figure 6: Up: surface model of the first slice in purple and yellow.
Down: surface model of successive slices.

2 usually and 3 in crossroads, see further). The same process is
applied to walking areas. Purple and yellow points in Fig. 5 are
discretizations of road and pavement surface polynomials.

The process moves forward in the direction that is perpendicu-
lar to slice’s one. A advancing parameter A defines the distance
between two successive slides (here it was set to 25cm). The pro-
cess stops when it get out of the point cloud area. An illustration
of the evolution of the process is depicted in Fig. 6. Once the first
street slice surface is approximated, a temporal consistency is set
up in the RANSAC procedure. It forces successive polynomials
to be relatively similar. Indeed, in the RANSAC process, only
the polynomials that have parameters close to previous ones are
taken into account. It helps handling occlusions and important
obstacles by using previous surface models (as well as neighbor-
ing 3D points) to estimate the new one. If no information at all is
available (which may happen in the walking areas, if a high ob-
stacle is located between the LIDAR sensor and the pavement),
the surface model remain constant and equal to previous one.

3 RESULTS AND EVALUATIONS

3.1 Mobile laser scanning

LIDAR data were obtained by a multi-sensor mobile laser scan-
ning system called Stereopolis (see (Paparoditis et al., 2012)).
The Stereopolis system is composed of a navigation device hy-
bridating measurements from two GPSs, an inertial measurement
unit, and a wheel odometer. The navigation device produces geo-
referencing of the platform that allows to locate all data and im-
agery in a global reference datum.

Data processed in this article have been acquired using a Riegl
VQ-250 located at the back of the truck. This LIDAR have an

accuracy of about one centimeter in depth and digitize 100 scan
lines per second, thus providing a spatial sampling in the along
track direction of about 10 cm.

3.2 Road side detection

Tests of the curb detection process have been realized on several
parts of the Parisian road provided by the Stereopolis. In most
part of the tested scenes, the model provides accurate road side
detection (Fig. 7).

Figure 7: Result of the prediction/estimation road side detection
model in a crossing part (red points). Green points are the initial-
ization.

Satisfying results have been obtained, even in the presence of oc-
clusions and curb ramps, especially in the linear parts of the road.
In Fig. 8 the right behavior of the model regarding occlusions
is illustrated. Many vehicles parked between the LIDAR sensor
and the road side to detect. However, the model uses the previous
results to get a fine prediction of the road side. Following these
predictions, the model passes through the occlusions and finds
out the road side on the other side of the occlusion.

Figure 8: Result of the prediction/estimation road side detection
model in two linear parts with many occlusions (red points).

There are still circumstances that are difficult to handle with the
proposed model. Especially, if a curb ramp or an occlusion occurs
in the bending part of the road side, the system may fails to follow
the road side. Indeed, if no 3D curb profile pattern is observed in
a bend, the prediction of the model will fail to retrieve the shape
of the road side. In order to efficiently and quickly process large
amount of data, a semi-automatic scheme has been set up.

Semi-automatic version

Our system may fail with curb ramps or occlusions that occur
in bends. A user-machine interface step that provides an efficient
semi-automatic tool to process curb detection in large point cloud
data is considered.

It is presented in Fig. 9 where a curb ramp occurs between two
close road side bends. The model fails to follow the road side
(the yellow curve) and an interaction with the user is asked. The
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Figure 9: Result of the prediction/estimation road side detection
model with two interactions. The yellow curve is the initial result,
the purple curve is the result with one interaction and the red one
is obtained using two interactions. The cyan points correspond to
user mouse clicks. The second cyan point has been clicked two
times: as second click for the first redirection and as first one for
the second redirection.

system produces an alarm when the process within a hole or a
flat part of the ground for more than Ns successive steps (Ns

was set to 20). First, an operator one tells the system from where
to reprocess the road side (i.e., when the system begins to fail),
then he indicates a position further (i.e., a direction) of the good
road side. This latter one will attract the process by enforcing
the system to make predictions in this direction. In Fig. 9, user
mouse clicks are depicted in cyan. The second cyan point has
been clicked two times: as second click for the first redirection
and as first one for the second redirection.

Figure 10 presents a typical result that was obtained on the Parisian
road network. Three interactions were needed since two curb
ramps occur in bending parts of the road side (the purple squares)
and one occlusion was observed in a road side chicane (the green
square). Every curb ramps observed in this road section have
been successfully detected (i.e., nine over nine). Thanks to the
user-machine interacting scheme, such a result may be obtained
on any road section in very little time and may be used to model
road and walking area surfaces.

Figure 10: Result of the prediction/estimation road side detection
model with three interactions on a part of Rue D’Assas, in the 6th
district of Paris (corresponding to 200 meters of road). The upper
image is the results of curb and curb ramp detection, the lower
one also presents the LIDAR data. In red, the detected curbs and
in orange, the detected curb ramps. Purple squares correspond to
interaction caused by a curb ramps occurring in bends. The green
square correspond to an occlusion that happens in the end of a
road side chicane.

Figure 11: Maps and histograms of the distances between the pro-
duced surface model and the real ground points on a road section.

3.3 Road/pavement surface modeling

Results of the surface modeling are quite satisfying since the
model reaches a centimetric precision on average. It is illustrated
in Fig. 11 that presents the map of the distances between the
surface model and ground points. To obtain this map, portions
of "good" road (not including crossroads, see further) have been
segmented, and obstacles removed. It allows to compare reliably
a model with the real data. Figure 11 shows that for 93% of the
points, the precision is less than 1cm and the mean distance is
around 0.5cm. Same results have been obtained with pavements.
Red areas on the borders of the road correspond to gutters, that
are not specifically considered in the model. Precision of the sur-
face reconstruction falls here to 2/3 cm.

As seen in Figs. 12 and 13, the model accurately fits surfaces and
is adapted to variations of ground shapes. In Fig. 13, a curb ramp
surface is well approximated.

Figure 12: An example of surface modeling on a curb area.

Figure 13: An example of surface modeling in a curb ramp area.

One of the main advantages of the overall method is that in both
steps, i.e., in the road side detection step and in the surface mod-
eling step, it handles reconstruction when no information is avail-
able. Figs. 14 and 15 illustrate surface reconstruction of the
method. It is based upon the idea that if only few (or no) data
is observed, previous results are taken into account to get a good
idea of the surface in holes. However, in Fig. 15, an inaccurate
reconstruction is presented. Indeed, after filling in the hole (due
to presence of a car between the sensor and the pavement), a curb
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Figure 14: A reconstructed area, behind a vehicle. Point cloud is
superimpose on the left.

Figure 15: Inaccurate reconstruction. Point cloud is superimpose
on the left.

ramp area is observed that was not present at the beginning of the
hole. Hence, the method reconstructs surface as a standard curb
and suddenly fits the curb ramp when exiting the hole. It creates
a wrong 3D pattern (a "stair") that does not exist.

Crossroads are detected and handled by the method (see Fig. 16).
Indeed, if the distance between the street slice and a road side is
higher than the advancing parameter A (see section 2.2), a cross-
road is detected. In this cases, a third order polynomial (instead of
a second order one) is used to model surface. Indeed, it has been
observed that while a parabola usually fits a standard road part,
crossroads surfaces are more variable. Using a third order poly-
nomial enables to efficiently fit such variations on the ground.

Fig. 17 presents result of street ground modeling in a Parisian
street. It was obtained rapidly (thanks to simple interacting scheme)
and is in a centimetric precision. Accurate street ground model-
ing is reachable for areas of any scale.

Tests have only been performed on some parts of the Parisian
network provided by the Stereopolis. It would be interesting to
test the method on other LIDAR data corresponding to scenes in
other cities, in order to verify robustness of the process.

4 CONCLUSION

In this paper, a road/walking areas surface modeling for MLS LI-
DAR data is presented. It is composed of two parts, a model for
road side and curb ramp detection is first described. Results of
this first step are further used to model surfaces of both roads
and walking areas. The process handle occlusions due to obsta-
cles since both road sides and surfaces are reconstructed when
no information is available. The system has been successfully
tested on large parts of the Parisian road network. A simple user-
machine interaction step is also proposed to provide an efficient
tool for processing of large amounts of data.

Figure 16: Crossroad areas.

Figure 17: Surface model of a street. Point cloud is superimpose
on the left.
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