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ABSTRACT: 
 

This paper presents an original unsupervised framework to identify regions belonging to buildings and roads from monocular very 

high resolution (VHR) satellite images. The proposed framework consists of three main stages. In the first stage, we extract 

information only related to building regions using shadow evidence and probabilistic fuzzy landscapes. Firstly, the shadow areas cast 

by building objects are detected and the directional spatial relationship between buildings and their shadows is modelled with the 

knowledge of illumination direction. Thereafter, each shadow region is handled separately and initial building regions are identified 

by iterative graph-cuts designed in a two-label partitioning. The second stage of the framework automatically classifies the image 

into four classes: building, shadow, vegetation, and others. In this step, the previously labelled building regions as well as the shadow 

and vegetation areas are involved in a four-label graph optimization performed in the entire image domain to achieve the 

unsupervised classification result. The final stage aims to extend this classification to five classes in which the class road is involved. 

For that purpose, we extract the regions that might belong to road segments and utilize that information in a final graph optimization. 

This final stage eventually characterizes the regions belonging to buildings and roads. Experiments performed on seven test images 

selected from GeoEye-1 VHR datasets show that the presented approach has ability to extract the regions belonging to buildings and 

roads in a single graph theory framework. 
 

1. INTRODUCTION 

Amongst the large set of man-made objects available in very 

high resolution (VHR) satellite images, buildings and roads 

unquestionably form the two most important object classes of 

an urban area. This is mainly because of the fact that most of the 

human population lives in urban and sub-urban environments, 

and extracting information belonging to these two classes in an 

automated manner could be very useful for a number of 

applications, e.g. urban area monitoring/detection, change 

detection, estimation of human population, transportation, and 

telecommunication. During the last four decades, a very large 

number of researchers have been involved for the detection of 

buildings and roads, and many research studies have been 

conducted. An extensive classification and summary of the 

previous work in the context of buildings can be found in 

excellent review papers published by Mayer (1999), Baltsavias 

(2004), Brenner (2005), and Haala and Kada (2010). Besides, 

exceptional review papers of Baumgartner (1997) and Mena 

(2003) also summarizes and describes the literature conducted 

for road detection. The focus of this paper is on the design and 

development of a graph theory framework which enables us to 

automatically extract regions belonging to buildings and roads 

from monocular VHR satellite images. Therefore, in this part, 

we very briefly summarize the previous studies aimed to 

automatically detect buildings and/or roads from monocular 

optical images. 
 

The pioneering studies for the automated detection of buildings 

were in the context of single imagery, in which the low-level 

features were grouped to form building hypotheses. Besides, a 

large number of methods proposed substantially benefit from 

the cast shadows of buildings (e.g. Lin and Nevatia, 1998; 

Katartzis and Sahli, 2008; Akçay and Aksoy, 2010). Further 

studies devoted to single imagery utilized the advantages of 

multi-spectral evidence, and attempted to solve the detection 

problem in a classification framework (e.g. Benediktsson et al., 

2003; Ünsalan and Boyer, 2005; Inglada, 2007; Senaras et al., 

2013). Besides, approaches like active contours (e.g. 

Karantzalos and Paragios, 2009), Markov Random Fields 

(MRFs) (e.g. Katartzis and Sahli, 2008), graph-based (e.g. 

Akçay and Aksoy, 2010; Izadi and Saeedi, 2012) and kernel-

based (Sirmacek and Ünsalan, 2011) approaches were also 

investigated. In rather recent papers, Ok et al. (2013) and Ok 

(2013) presented an efficient shadow-based approach to 

automatically detect buildings with arbitrary shapes in 

challenging environments. 
 

The previous studies conducted on road detection from 

monocular optical images are also vast. In the early works, rule-

based systems and knowledge-based approaches were popular. 

Various studies integrated morphological processing to achieve 

a solution for the road extraction problem (e.g. Shi and Zu, 

2002; Guo et al., 2007). Classification strategies utilizing multi-

band information are also well-studied (e.g. Wiedemann and 

Hinz, 1999; Mena and Malpica, 2005). Approaches like, support 

vector machines (e.g. Huang and Zhang, 2009), neural networks 

(e.g. Das et al., 2011), and MRFs (e.g. Katartzis et al., 2001) 

were also investigated. In a comparison study, Mayer et al. 

(2006) showed the possibility and the extents of the extraction 

of road centreline using six different approaches. In several 

recent works, Tournaire and Paparoditis (2009) developed an 

approach based on Marked Point Processes to extracted road 

markings. Poullis and You (2010) presented a method based on 

the combination of perceptual grouping and graph-cuts to 

extract roads. Das et al. (2011) developed an approach based on 

salient features and constraint satisfaction neural network to 

identify road networks. In a different work, Ünsalan and 

Sirmacek (2012) detected the road networks using a 

probabilistic framework and their approach was tailored for 

single-band datasets. In a rather recent work, conditional 

random field based approach (Wegner et al., 2013) was 

proposed to accurately detect regions belonging to road 

segments from aerial images.  
 

Considering the above prior work, the researchers are motivated 

for a single set of object, either buildings or roads, and the 

approaches developed are specialized to distinguish only one of 

the objects. Despite the fact that the two classes have their own 

characteristics, both objects are in fact complementary of each 
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other in several aspects: there is a road connection to most of 

the buildings, a road segment might be occluded by buildings 

etc. (Hinz et al., 2001). Therefore, if the extraction of these two 

objects can be handled in a single framework, this might have a 

positive affect on the final quality of the detection of each 

individual class in an urban area. To the best of our knowledge, 

so far, there are only a very limited number of studies that 

realizes such an integrated behaviour. Hinz and Baumgartner 

(2000) and Hinz et al. (2001) emphasized the importance of 

contextual information for road extraction. They proposed an 

approach based on both global and local context of roads 

including buildings. However, their approach utilizes a DSM to 

detect shadow and building areas to facilitate the road 

extraction. Ünsalan and Boyer (2005) detected houses and 

streets in a graph-related strategy. Their method extracted the 

street network using the snakes having unary and binary 

constraints, and the regions remaining after the detection of the 

street network was considered as houses. However, their 

strategy is only valid for certain house and street formations 

observed in North America because of the assumptions involved 

during the detection. Aytekin et al. (2012) also proposed an 

approach to detect buildings and roads. Their approach was 

based on segmentation, and the regions belonging to buildings 

and roads were separated using very primitive morphological 

processing. 
 

This paper presents an original framework to extract regions 

belonging to buildings and roads from VHR satellite images in 

an automated manner. The basis of the framework relies on 

three main stages. Stage I aims to extract information only 

related to building regions. We benefit from the shadow 

information, and directional spatial relationship between 

buildings and their shadows is modelled with fuzzy landscapes. 

We utilize a systematic procedure to eliminate the fuzzy 

landscapes that might belong to non-building objects. 

Thereafter, initial building regions are identified by iterative 

graph-cuts designed in a two-label (building and others) 

partitioning performed in region-of-interests (ROI) generated 

using shadow components. The goal of Stage II is to integrate 

the global evidence into the framework and to improve the 

extent of the classification in the entire image domain to four 

distinct classes (building, shadow, vegetation, and others). In 

this stage, the previously labelled building regions as well as the 

shadow, vegetation, and other areas are involved in a four-label 

graph optimization performed in the entire image domain. Stage 

III aims to eventually characterize the regions belonging to 

buildings and roads. We extract the regions that might belong to 

road segments from the class others and utilize that information 

to initialize a final graph optimization performed with five 

different labels (building, shadow, vegetation, road and others). 

This final step automatically divides the entire image into five 

classes where the buildings and roads are eventually identified. 
 

The individual stages of the proposed framework will be 

described in the subsequent sections. Some of these stages are 

already well-described in Ok et al. (2013) and Ok (2013) and 

therefore, these stages are only shortly revised in order to 

provide a complete overview of the methodology. Those two 

previous papers are fully motivated for the extraction of 

building objects solely, whereas the originality of this paper 

arises from the fact that it enables us to concentrate the classes 

building and road in a multi-level graph partitioning framework. 
 

The remainder of this paper is organized as follows. The 

proposed framework is presented in Section 2. The results are 

shown and discussed in Section 3. The concluding remarks and 

future directions are provided in Section 4. 

2. PROPOSED FRAMEWORK 

2.1 Image and Metadata 

The approach requires a single pan-sharped multi-spectral (B, 

G, R, and NIR) ortho-image. We assume that metadata 

providing information about the solar angles (azimuth and 

elevation) of the image acquisition is attached to the image.  
 

2.2 Detection of Vegetation and Shadow Areas 

Normalized Differential Vegetation Index (NDVI) is utilized to 

detect vegetated areas. The index is designed to enhance the 

image parts where healthy vegetation is observed; larger values 

produced by the index in image space most likely indicate the 

vegetation cover. We use the automatic histogram thresholding 

based on Otsu’s method (Otsu, 1975) to compute a binary 

vegetation mask MV (Fig. 1b). A recently proposed index is 

utilized to detect shadow areas (Teke et al., 2011). The index 

depends on a ratio computed with the saturation and intensity 

components of the Hue-Saturation-Intensity (HSI) space, and 

the basis of the HSI space is a false colour composite image 

(NIR, R, G). To detect shadow areas, as also utilized in the case 

of vegetation extraction, Otsu’s method is applied. Thereafter, 

the regions belonging to vegetated areas are subtracted to obtain 

a binary shadow mask MS. We perform a constrained region 

growing process on detected shadow regions and apply a new 

directional morphological processing (Ok, 2013) to filter out the 

shadow areas corresponding to relatively short objects to 

achieve a post-processed shadow mask MPS (Fig. 1c). 
 

2.3 The Generation and Pruning of Fuzzy Landscapes 

Given a shadow object B (e.g. each 8-connected component in 

MPS) and a non-flat line-based structuring element         , the 

landscape βα (B) around the shadow object along the given 

direction α can be defined as a fuzzy set of membership values 

in image space: 
 

  ( )  (             )     .        (1) 
 

In Eq. 1, Bper represents the perimeter pixels of the shadow 

object B, BC is the complement of the shadow object B, and the 

operators   and ∩ denote the morphological dilation and a 

fuzzy intersection, respectively. The landscape membership 

values are defined in the range of 0 and 1, and the membership 

values of the landscapes decrease while moving away from the 

shadow object, and bounded in a region defined by the object’s 

extents and the direction defined by angle α. In Eq. 1, we use a 

line-based non-flat structuring element          (Fig. 2a) 

generated by combining two different structuring elements with 

a pixel-wise multiplication:                      , where      

is an isotropic non-flat structuring element with kernel size κ, 

whereas the flat structuring element        is responsible for 

 

 
(a) 

 
(b) 

 
(c) 

Figure 1. (a) GeoEye-1 pan-sharped image (RGB), (b) 

vegetation mask (MV), (c) post-processed shadow mask (MPS). 
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providing directional information where L denotes the line 

segment and α is the angle where the line is directed. 
 

During the pruning step, we investigate the vegetation evidence 

within the directional neighbourhood of the shadow regions. At 

the end of this step, we remove the landscapes that are 

generated from the cast shadows of vegetation canopies.  
 

2.4 Stage I: Local Processing to Detect Initial Building Regions 

In this stage, we consider the building detection task as a two-

class partitioning problem where a given building region has to 

be separated from the background (building vs. others). 

Therefore, the class building in an image corresponds only to 

the pixels that belong to building regions, whereas the class 

non-building may involve pixels that do not belong to any of 

building areas. To solve the partitioning, we utilize the GrabCut 

approach (Rother et al., 2004) in which an iterative binary-label 

graph-cut optimization (Boykov and Kolmogorov, 2004) is 

performed. 
 

GrabCut is originally semi-automated foreground/background 

partitioning algorithm. Given a group of pixels interactively 

labelled by the user, it partitions the pixels in an image using 

graph theory. In Ok et al. (2013), we adapted the GrabCut 

approach to an automated building detection framework. In that 

approach, the pixels corresponding to foreground/building (TF) 

and background/non-building (TB) classes are labelled 

automatically using the shadow regions and the generated fuzzy 

landscapes. We define the TF region in the vicinity of each 

shadow object whose extents are outlined after applying a 

double thresholding (η1, η2) to the membership values of the 

fuzzy landscape generated. To acquire a fully reliable TF region, 

a refinement procedure that involves a single parameter, 

shrinking distance (d), is also developed. For each shadow 

component, a bounding box whose extent is automatically 

determined after dilating the shadow region is generated to 

select the TB and to define the ROI region in which the GrabCut 

partitioning is performed. Once a bounding box is selected, the 

pixels corresponding to background information within the 

selected bounding box are automatically determined: the 

shadow and vegetation regions as well as the regions outside the 

ROI region within the bounding box are labelled as TB. 
 

2.5 Stage II: Global Processing to Extract Building Regions 

After Stage I, the building regions are detected with relatively 

reduced completeness but with almost no over-detection (Fig. 

2c). The aim of this stage is to acquire building regions by 

investigating the global evidence collected for the building 

regions in the entire image space. The entire image can be 

divided into four distinct classes with the help of the pre- 

computed vegetation (MV) and shadow masks (MPS) after 

 

 

0       0.5        1 

 
 

 
 

 
(a) 

 
(b) 

 
(c) 

Figure 2. (a) Structuring element         . (b) The fuzzy 

landscapes generated using the shadow mask provided in Fig. 

1c, and (c) building regions detected after Stage I. 

detecting the building regions from the first stage. First, we 

assign unique labels for the regions belonging to each class; 

building, vegetation and shadow. Thereafter, the remaining 

regions that do not correspond to any of these three classes are 

assigned to a fourth class, others (Fig. 3a). 
 

In this stage, we follow the approach proposed in Ok (2013). In 

that approach, we proposed a single-step four-label graph-cut 

optimization. Given a set of pixels   (          ), and a set 

of class labels L   {1, … l} where l = 4, our aim is to find the 

optimal mapping from data z to class labels L. Each pixel has an 

initially assigned value (αn) corresponding to each class labels L 

where             . We follow the Gibbs energy function 

provided in (Rother et al., 2004), and initialize a GMM with K 

components for each of the four classes. We also follow the 

same expression for the spatial smoothness term provided in 

(Rother et al., 2004), which states the smoothness priors in 

relation to the optimal mapping from data z to class labels L. 
 

In order to minimize energy for multi-label optimization using 

graph-cuts, a special graph (Boykov et al., 2001) that depends 

on the smoothness term and the number of labels L is 

constructed. For the optimization, an effective approach is the 

α-expansion move algorithm. Here, we briefly describe the α-

expansion approach and for further information, see Boykov et 

al. (2001). As a formal definition, let f and g be two different 

mappings from data z to class labels L, and let α be a specific 

class label. A mapping g is defined as an α-expansion move 

from mapping f if gn ≠ α implies gn = fn, where n denotes a pixel 

in data z. With this definition, the set of pixels assigned to the 

label α has increased from mapping f to mapping g. The 

approach performs cycles for mapping every class label L in a 

certain order that is fixed or random, and aims to find a 

mapping from data z to class labels L that is a local minimum of 

the energy with respect to the expansion moves performed. The 

approach is guaranteed to terminate in finite number of cycles, 

and finishes when there is no α-expansion move with lower 

energy for any class label L exists. 
 

Despite the fact that the four-label optimization identifies and 

correctly labels most of the building regions, several non-

building regions might still be incorrectly labelled as buildings 

in the final result due to the spectral similarities involved 

between some building and non-building areas. Therefore, to 

solve this problem, we also proposed a new shadow verification 

approach (Ok, 2013). During the verification, we extract the 

regions belonging to class building, and confirm these regions 

with the previously generated probabilistic landscape. For the 

regions that could not be confirmed, we exploit shadow 

information that may reveal after the four-label optimization, 

and the regions rejected are further tested for new shadow 

 

 
(a) 

 
(b) 

 
(c) 

Figure 3. (a) The input of Stage II, (b) verified building regions, 

and (c) the output of Stage II. White, green, black, and grey 

colours indicate the regions for the classes building, vegetation, 

shadow and others, respectively. 
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evidence. Thus, our approach has ability to recover building 

regions (Fig. 3b) whose shadow regions are missed in the initial 

shadow mask generated (Fig. 1c). Finally, building regions 

which could not be validated with shadow evidence are joined 

to the class others (Fig. 3c). 
 

2.6 Stage III: Simultaneous Extraction of Buildings and Roads 

After Stage II, we expect the class others to involve any object 

other than buildings, vegetation, and shadows. Thus, if we 

extract only the regions belonging to class others after Stage II 

(Fig. 4a), this class principally covers a number of subclasses 

like roads, open lands, vehicles, parking lots etc. in an urban 

area. However, note that, despite the quality of the four-label 

optimization achieved after Stage II, some of the building 

regions might still be incorrectly labelled as class others (due to 

occlusions on shadow regions etc.) or vice versa (due to bridges 

etc.). For that reason, in this stage, our objective is to separate 

the regions that are likely to belong to roads using the 

information gathered from Stage II. However, as can be seen in 

Fig. 4a, the regions belonging to class others can be quite 

complex, therefore a simple post-processing generally does not 

work well. Therefore, this final stage aims to extend the 

previous classification to five classes in which the roads are 

involved as a separate class. We automatically extract 

representative regions that are likely to belong to road segments 

from the class others and utilize that information to initialize 

five-label graph optimization in the entire image domain. For 

that purpose, initially, some large patches and other features 

attached to the road segments must be removed. In a recent 

work, Das et al. (2011) proposed an efficient strategy to 

separate road regions from non-road regions. In short, they 

utilize region part segmentation (RPS) to separate the road 

regions from attached irrelevant non-road regions and 

thereafter, medial axis transform (MAT) based approach is 

employed to filter and verify road hypotheses. In this part, we 

follow their RPS approach to remove irrelevant objects (e.g. 

parking lots) and modify the MAT approach to collect the 

regions that are most likely to belong to road regions. We also 

follow their reasonable hypothesis for MAT processing: the 

widths of roads do not vary abruptly. After extracting each 

reasonable sub-component from MAT-based processing, we 

defined a buffer around each component to initialize the road 

information required for the final graph optimization (Fig. 4b). 

We follow the multi-label optimization framework introduced 

in Stage II, however, this time with five classes: building, road, 

vegetation, shadow, and others. At the last step, we extract the 

regions labelled as building and road from the optimization 

result (Fig. 4c), and perform the shadow verification (cf. Stage 

II, only for the class building) to achieve the final results. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 4. (a) The regions belonging to class others, (b) input for 

the class road, and (c) the output of Stage III. White, red, green, 

black, and grey colours indicate the regions for the classes 

building, road, vegetation, shadow and others, respectively. 

3. RESULTS AND DISCUSSION 

The test data include images acquired from GeoEye-1 sensor 

with 50 cm ground sampling distance, and all images are 

composed of four multi-spectral bands (R, G, B and NIR) with a 

radiometric resolution of 11 bits per band. The assessments of 

the proposed approach are performed over seven test images 

which differ from their urban area and building characteristics 

as well as from their illumination and acquisition conditions.  

Reference data corresponding to buildings and roads are drawn 

by an experienced operator. Pixel-based precision, recall and 

F1-score (Aksoy et al., 2012) performance measures are 

determined for each of the two classes to assess the quality of 

the results of the extraction. The proposed framework requires 

no training data collection, thus, the results can be computed 

once the parameter values are determined. All parameters 

required for Stages I and II are already investigated 

comprehensively in Ok (2013). Therefore, in this study, we 

considered and investigated the parameters required for stage 

III, and utilized a fixed parameter set to run the proposed 

framework for all test images. 
 

We visualize the results in Fig 5, and according to the results 

presented, the proposed framework seems to be effective for 

both the extraction of buildings and roads. The building regions 

are very well identified despite the complex characteristics of 

buildings in the test images, e.g. roof colour and texture, shape, 

size and orientation. The road segments are also recognized for 

most of the cases on the condition that the segments are not 

occluded. The numerical results in Table 1 favour these facts. 

For buildings, we achieved overall mean ratios of precision and 

recall as 83.0% and 89.4%, respectively. The computed pixel-

based F1-score for seven test images is around 86%. On the 

other hand, overall mean ratios of precision and recall are 

computed as 62.9% and 71.5%, respectively, for road segments. 

This corresponds to an overall object-based F1-score of 

approximately 67%. If the complexities of the test images and 

the involved imaging conditions are taken into consideration, 

we believe that this is a promising performance for the 

extraction of buildings and roads. 
 

According to the results presented in Fig. 5, the proposed 

approach gives the strong impression that the method is highly 

robust for buildings, and the regions detected are quite 

convincing and representative. As can be seen, most of the 

building regions are extracted successfully without having a 

strict limitation influenced by the well-known complex 

characteristics of buildings, e.g. roof colour and texture, shape, 

size and orientation. It is also evident that the approach 

distinctively separates building regions from other areas except 

for a few cases. The lowest precision ratio (67.1%) is obtained 

for test image #4. This is due to large over-detection observed in 

the upper-centre of the image. In that part of the image, 

unfortunately a part of the gable roof is wrongly detected as a 

shadow region. As a result, automatically selected TF region    

in    the   first   stage   contains   a   number   of    pixels 

corresponding to the background near the building, and 

therefore, an over-detection is emerged in the final result. Our 

approach recovers buildings from single evidence, shadows. 

Therefore, if a large non-shadow region whose spectral 

reflectance is very close to the shadow regions exists, the 

approach may produce false positive regions, e.g. the two 

regions shown in the upper-left corner of test image #3. Besides, 

the cast shadows of two specific man-made objects, a building 

and a bridge, cannot be separated. Therefore, large bridges 

primarily used for vehicular traffic might also be incorrectly 

labelled as buildings. Such problematic cases are visible in test 

image #6. Besides these problems, the results prove that the
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Figure 5. (first column) Test dataset (#1-7, RGB), (second 

column) the results of building regions, and (third column) the 

results of road regions. Green, red and blue colours represent 

true-positive, false-positive and false-negative, respectively. 

 

approach presented is generic for different roof colours, textures 

and types, and has the ability to extract arbitrarily shaped 

buildings in complex environments. Not surprisingly, the 

approach works best for the cases where the cast shadows of 

buildings are clearly visible and not occluded by any other 

object (#5). 
 

The results of road regions shown in Fig. 5 reveal that the 

approach proposed has ability to extract road segments provided 

that the segments are not occluded by any other object, e.g. 

buildings and trees. Besides, a major difficulty arises due to cast 

shadows of these objects  (#4 and #7). In dense urban areas,  the 

Table 1. Test results of the proposed approach. 

ID 

Performance (%) 

Buildings Roads 

Precision Recall 
F1-

score 
Precision Recall 

F1-

score 

#1 74.0 81.8 77.7 41.6 69.1 51.9 

#2 77.4 82.2 79.7 62.8 52.8 57.4 

#3 76.9 89.3 82.6 84.3 91.3 87.7 

#4 67.1 92.9 77.9 50.0 50.8 50.4 

#5 92.8 96.5 94.6 72.6 87.1 79.2 

#6 84.8 87.7 86.2 58.7 77.7 66.9 

#7 87.1 90.4 88.7 56.9 52.1 54.4 

Total  83.0 89.4 86.1 62.9 71.5 66.9 
 

performance of road detection particularly depends on the solar 

angles of the image acquisition. Thus, in specific illumination 

conditions (e.g. acute sun elevation angles); it might not be 

possible to extract any of the road segments of a dense urban 

area. Nevertheless, for the presented test images (#4 and #7), 

our approach recovered most of the visible road segments. One 

other important point to be emphasized for road detection is the 

smoothness assumption enforced during the global partitioning. 

Although the level of smoothness can be easily controlled 

during global processing performed in Stage III, it is not always 

possible to handle all thin linear structures that might belong to 

road segments because of the smoothing involved, and this fact 

might negatively affect the recall ratios computed for the road 

segments. Nevertheless, despite the difficulties mentioned, we 

must strongly highlight the fact that the proposed approach 

utilizes only a very basic assumption for road detection (that is 

the widths of roads do not vary abruptly) and no prior 

information is employed for the extraction of buildings and 

roads. Thus, having this fact in mind, we believe that the 

proposed framework has unique behaviour to extract buildings 

and roads, and provides fairly satisfactory results in complex 

environments. 
 

4. CONCLUSIONS 

In this paper, a novel graph-based approach is presented to 

automatically extract regions belonging to buildings and roads 

from a single VHR multispectral satellite image. Assessments 

performed on seven test images selected from GeoEye-1 images 

reveal that the approach has ability to extract buildings and 

roads in a single graph theoretic framework. In the near future, 

we will focus more to improve Stage III where the automated 

information is extracted for the class road. In an urban area, one 

of our major tasks is to separate large bridges from buildings; 

therefore, we plan to expand the method such that a logical 

separation between the buildings and bridges could be achieved. 

In a rather recent work, Wegner (2013) showed that higher-

order cliques in a random field could be an interesting way to 

represent regions belonging to roads. Thus, this information 

might also be an interesting topic for further research. Finally, 

the simplification of the outlines of the building regions and the 

road network is also a required task and we will pursue in the 

future. 
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