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ABSTRACT:

This paper presents a model and an optimization method for a problem that appears when reducing the scale of a topographic database.
Such a database commonly contains areas of different land cover classes that define a planar subdivision. When reducing its scale, some
areas become too small and need to be aggregated. In order to produce contiguous aggregates that are not smaller than a user-defined
threshold, it is necessary to change the classes of some areas. As generalization intends to preserve the characteristic features of the
map, we aim to change classes as little as possible. A second objective is to create simple, compact shapes. Based on a previous work
that neglected this second objective, we define a more general problem in this paper that reflects both aims of generalization. The
problem was proven to be NP-hard, meaning that it is unlikely to find an efficient solution. Therefore, we propose a mixed-integer
program (MIP) and heuristics, which enable the production of near-optimal results. The paper concludes with the presentation of some
results we obtained using our method.

1 INTRODUCTION

In topographic databases information about land use or land cover
is commonly represented by areas that are assigned to different
classes, such as settlement, water, or different kinds of vegeta-
tion. The areas in such a database collectively define a subdivi-
sion of the plane, i.e., overlaps and gaps are not allowed. Genera-
lizing this kind of map requires algorithms for different problems
(Bader and Weibel (1997)). A challenging task is the aggregation
of areas, which aims to satisfy size thresholds for the target scale.
In an earlier paper we proposed a method for this generaliza-
tion problem based on mixed-integer programming - a technique
for combinatorial optimization (Haunert and Wolff (2006)). This
method ensures different kinds of constraints coming from the
specifications of the data sets and produces solutions with mini-
mum change of land cover classes. The results were promising,
but it was observed that the resulting geometries were not com-
pact. Figure 1 (left) shows an example of a map at the original
scale and the result which was obtained according to the defined
objective (right). The settlement in the result (red) contains a nar-
row isthmus that was created to satisfy the area constraint while
expending a minimum cost for class changes. In order to avoid
such complex shapes, we define compactness as additional objec-
tive in this paper. The possibilities for the application of different
compactness measures are discussed.

When designing optimization problems always two things need
to be taken into account: The adequacy of the optimization ob-
jective and the possibility to solve the problem. Because of this,
we concentrate on compactness measures that can be expressed
by linear expressions. Regrettably, with this requirement, it is not
possible to express size-invariant compactness measures. We dis-
cuss this deficit and its effects in detail. To cope with this, we add
further requirements to the problem.

The paper is structured as follows: In Section 1.1 we discuss re-
lated work. Section 2 gives a formal problem definition and dis-
cusses the possibilities and difficulties to model compactness. In
Section 3 we define a problem with additional requirements that
allows to better express the cartographer’s aim of generalization

Figure 1: An example from the input data set at scale 1:50.000
(left) and a result for the scale 1:250.000 when minimizing
changes of classes.

while getting along with the defined measures. In Section 4, we
present our new mixed-integer program, results and an outline of
an approach for the processing of large data sets. Finally we give
a conclusion.

1.1 Related Work

The problem of area aggregation in map generalization has exten-
sively been analyzed by researchers (Timpf (1998); van Smaalen
(2003)). However, from an algorithmic point of view little suc-
cess has been made in tackling its combinatorial nature. Different
researchers have proposed iterative methods for the area aggrega-
tion problem. The following algorithm is described by van Oost-
erom (1995):

In each iteration the feature with lowest importance is selected.
The selected feature is merged with a neighbor, which is chosen
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according to a collapse function, and the next iteration is pro-
cessed. The iteration can be terminated, if all areas satisfy the
minimal dimension that is required for the target scale.

Many proposed algorithms are specializations of this general me-
thod. Jaakkola (1997) uses the method within a more comprehen-
sive generalization framework for raster based land cover maps.
Podrenek (2002) discusses preferences for merges, which reflects
the collapse function. Generally, semantic similarity of classes,
boundary lengths and area sizes are considered as criteria that
need to be incorporated into the collapse function. The main
problem with these iterative approaches is that consequences for
future actions are not taken into account, when greedily selecting
a neighbor. Therefore, we present a global approach in this paper.

Though there has not been any global optimization approach to
area aggregation in map generalization, there exists a multiplicity
of related problems that have been investigated by researchers.
Especially, in the field of operations research, optimization me-
thods for districting and aggregation problems have been devel-
oped. A typical application is the definition of sales districts pre-
sented by Zoltners and Sinha (1983). Their solution to find op-
timal districts is based on mathematical programming. As it is
aimed to minimize distances between customers and stores, com-
pactness is also aimed in their approach. We discuss the applied
measure in Section 2.2.1. Other researchers have applied meta-
heuristics such as simulated annealing (Bergey et al. (2003)). The
major disadvantage of these methods is the requirement for the
definition of several tuning parameters, which are not inherent
to the aggregation problem. Because of this, we concentrate on
mathematical programming.

2 AGGREGATION PROBLEM

2.1 General Problem Statement

In this section, we first give a formal problem definition, which
models the requirements and objectives of area aggregation in
map generalization, and then explain this definition in detail. We
simply refer to this problem as “Area Aggregation”.

Given

• a planar graph G(V, E) with node weights w : V → R
+

and a coloring of nodes γ : V → Γ, where Γ is the set of all
colors, i.e. land cover classes,

• a function θ : Γ → R
+, defining minimal allowed weights

for colors,

• a function d : Γ2 → R
+
0 , expressing a distance between

colors,

• a function c : 2V ×Γ → R
+
0 , defining the non-compactness

of an aggregate,

• and a scalar weight factor s ∈ [0, 1],

define a new coloring γ′ : V → Γ of nodes and find a partition
P = {V1, V2, . . . , Vp} of V , such that

• for each node set Vi ∈ P

– the graph induced by Vi is connected,

– all nodes in Vi receive the same new color γ′
i ∈ Γ,

i.e., γ′(v) = γ′
i for all v ∈ Vi,

– there is at least one node v ∈ Vi with unchanged
color, i.e., γ′(v) = γ(v),

– and Vi has total weight at least θ(γ′
i),

• and the cost

s ·∑v∈V w(v) ·d(γ(v), γ′(v))+(1−s) ·∑Vi∈P c(Vi, γ
′
i)

is minimized.

The graph G is the dual graph of the planar subdivision. It con-
tains a node for each shape and an edge between two nodes if the
corresponding shapes share a common boundary. Node weights
represent the sizes of areas. Land cover classes are represented
by colors.

The defined requirements for connectivity and weight feasibility
come from the specifications of data sets. Such specifications
have been introduced as data standards by mapping authorities.
To model minimal allowed area sizes that are defined for different
land cover classes in the target scale, the weight threshold θ is
defined as a function of color. Additionally, the requirement for
a node with unchanged color in each part is introduced, to avoid
that new classes pop up in the generalized map. Throughout this
paper, such a node, which defines the color of an aggregate, will
be referred to as center. Note that in this definition each node is a
potential center. Figure 2 shows an instance of the problem and a
solution, which is feasible according to the defined requirements.
The partition P defines the shapes for the target scale, which can
be obtained by geometrical union of shapes that correspond to the
nodes contained in each element Vi ∈ P .

v1 v2 v3

v4 v5 v6

v7 v9v8

w(v) = 1 ∀v ∈ V

θ(γ) = 3 ∀γ ∈ Γ

Figure 2: An instance of the aggregation problem (left) and
a solution with P = {{v1, v2, v4}, {v3, v5, v6}, {v7, v8, v9}}
(right).

The objective function expresses the cartographer’s preferences
for different feasible solutions. Two different objectives can be
identified: Firstly, it is aimed to change the original classes as
little as possible. Secondly, compact shapes are preferred. To
model these two aims, the two functions d and c are introduced,
which are combined in a weighted sum. These functions need to
be explained in detail.

The function d defines costs that are charged to change an area of
unit size from one color into another. The values of this function
could be given explicitly by a quadratic matrix with |Γ| × |Γ|
elements. Generally, this matrix is not symmetric: Objects of
rare land cover classes are often considered more important than
others. It is unwanted to loose these objects; because of this,
one will rather change a frequent class into a rare class than vice
versa.

The function c defines a penalty being charged for the non-com-
pactness of an aggregate, i.e., an area in the target scale that is
defined by a subset of nodes and their new color (2V refers to
the power set of V , i.e., the set of all subsets of V ). We assume
that c attains high values for complex shapes, but we will simply
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use the term compactness measure in the following. It is clear
that explicitly expressing the values of this function is prohibitive
due to limited time and storage space. However, no assumptions
are made for this function here, in order to allow for different
variations of the problem.

The complexity of this problem was investigated for the special
case that compactness is neglected, i.e., for s = 1. Even for this
case, the described problem was proven to be NP-hard, which
means that it is very unlikely to find an efficient algorithm that
reaches the optimal solution (Haunert and Wolff (2006)). This is
still true, if |Γ| = 2, i.e., if the map only contains areas of two
different classes. The NP-hardness justifies that we will later turn
to mixed-integer programming and to heuristics.

2.2 Definition of Compactness

In the last section, the objective for compactness of shapes was
expressed in a very general sense by the function c. This defini-
tion is specified here. Many different compactness measures have
been proposed by researchers for the analysis of shapes. A de-
tailed discussion is given by Maceachren (1985). The presented
measures could be expressed as objectives to be optimized for the
area aggregation problem.

However, before deciding for a specific model, it needs to be
pointed out that this definition will influence the solvability of the
problem. For this reason, we only consider those measures here
that can be expressed by means of linear expressions, including
integer and fractional variables. Additionally, we would like to
bound the number of variables by a polynomial of low degree,
e.g., quadratic in the input size. With this in mind, we discuss the
possibilities to model compactness.

2.2.1 A Measure based on Distances to a Center A simple
measure of compactness is defined by Zoltners and Sinha (1983).
The aggregate defined by the set V ′ ∈ 2V contains a node u ∈
V ′ whose corresponding shape defines the geometrical center of
the aggregate by its centroid. The aggregate is considered to be
compact, if the centroids of all other nodes in V ′ are close to this.
To respect different sizes of areas, a penalty is charged for each
node, which is equal to the product of the node’s weight and the
distance of its centroid from the geometrical center.

To apply this measure here, we claim that the geometrical cen-
ter and the center according to Section 2.1 are defined by the
same node. This definition slightly eases the problem, because
less variables are needed to express the model. Nevertheless, it is
reasonable, since it is undesired that nodes with unchanged color
only appear at the margin of an aggregate. In other words, it
is preferred, that nodes “gather around” a center of unchanged
color. If there are several nodes with this color, then, among
these, the center is defined by the node for which the overall
penalty is minimal.

To formalize this measure, let δ : V 2 → R
+
0 be the Euclidean

distance between centroids of the shapes corresponding to two
nodes. With this, we define the measure c1 : 2V × Γ → R

+
0 as

c1(V
′, γ′)

= min

{ ∑
v∈V ′

w(v) · δ(v, u) | u ∈ V ′ ∧ γ(u) = γ′
}

. (1)

The function c1 attains high values for complex shapes. Cer-
tainly, this measure only coarsely reflects the geometrical char-
acteristic of a shape, since shapes are approximated by centroids.
Because of this, the aggregate’s perimeter is introduced as a sec-
ond measure.

2.2.2 Measuring Compactness by the Perimeter of a Region
The previously discussed iterative approaches to area aggregation
in map generalization usually consider the length of boundaries
as criterion when choosing a neighbor for merging (van Oosterom
(1995)). To formalize the perimeter of an aggregate, let λ : E →
R

+ be the length of the common boundary between two areas.
Now, the perimeter c2 : 2V → R

+
0 becomes

c2(V
′) =

∑
e∈E′

λ(e) , (2)

with E′ being the set of edges incident to one node in V ′, i.e.,

E′ =
{{u, v} ∈ E | ∣∣{u, v} ∩ V ′∣∣ = 1

}
.

Similar to c1, the compactness measure c2 attains high values for
complex shapes, which supposably have greater perimeters.

2.2.3 Discussion of Proposed Measures Both measures can
result in side-effects, when being applied as global objectives.
These need to be discussed. The measures c1 and c2 can result in
two different biases:

1. When minimizing
∑

Vi∈P c1(Vi, γ
′
i), solutions with many

small aggregates are preferred compared to solutions with
few large aggregates. This is simply because average dis-
tances to centers are shorter for smaller aggregates.

2. When minimizing
∑

Vi∈P c2(Vi), solutions with few large
aggregates are preferred compared to solutions with many
small aggregates. In fact, when neglecting the objective
for minimal color change, the globally optimal result would
contain only one single aggregate, since in this case the total
boundary length of the resulting partition would be minimal.

Both effects are due to the fact that the measures are not size
invariant. In order to avoid these effects, the functions c1 and
c2 could be normalized. However, we cannot satisfy the earlier
claimed possibility for modeling the objective by means of linear
expressions when using size invariant compactness measures.

It is important to note that aggregates will not become too small
when applying c1, since the size of each aggregate is bounded
from below by the threshold θ. However, when applying the mea-
sure c2 we run the risk of creating unintentionally large aggre-
gates. To avoid this danger, we add additional hard requirements
to the problem statement from Section 2.1. A detailed explana-
tion of this method is given in Section 3.

3 AN APPROACH BASED ON PREDEFINED CENTERS

To avoid the creation of too large aggregates one could define an
upper bound for the weights of the elements in the partition P , or
a lower bound for the number of elements in P . Both definitions
are probably too global and do not take local differences in the
data set into account. Because of this, we chose another approach.
It is based on a set of nodes that are predefined as centers. We
give a general outline of this approach, formalize the modified
problem and explain the definition of centers in detail.

3.1 Outline of Approach

In our previous paper (Haunert and Wolff (2006)), we proposed a
heuristic that allowed for the elimination of certain variables. The
idea was to fix relatively large areas as centers of aggregates. This
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resulted in solutions with slightly higher values for the objective
function, i.e., the total change of colors increased approximately
by 10%. In the same way we subjectively perceived a decrease of
quality.

Our first experiments with the proposed compactness measures,
however, revealed that the defined objective function does not
suffice to model our aim: Without fixed centers, the aggregates
did not become compact enough when giving low weights to
c2 and the aggregates became unintentionally large for higher
weights. The reason for this effect was explained in Section 2.2.3.
Nevertheless, by fixing centers we did obtain nice and compact
results. Since each aggregate can contain at most one center, the
expansion of aggregates is limited. We assume that this model
sufficiently reflects the aims of area aggregation in map general-
ization if the set of fixed centers is reasonably defined. Because
of this, we include the previously defined heuristic in the problem
statement.

3.2 Modified Problem Statement

The modified problem is defined as generalization of the problem
Area Aggregation from Section 2.1. We refer to this problem
as “Area Aggregation With Predefined Centers”. In addition to
an instance of Area Aggregation we require a set of predefined
centers C ⊆ V as input and define the constraints that for each
node set Vi ∈ P

• at most one center is contained, i.e, |Vi ∩ C| ≤ 1 and

• if Vi contains a center v ∈ C, then all nodes u ∈ Vi receive
the color of the center, i.e., γ′(u) = γ′

i = γ(v).

With the concept of predefined centres, the measure c1 is gener-
alized by the function c3 : 2V × Γ → R

+
0 :

c3(V
′, γ′) =

⎧⎨
⎩

∑
v∈V ′

w(v) · δ(v, u) if a node u is in V ′ ∩ C ,

c1(V
′, γ′) else, i.e., if V ′ ∩ C = ∅ .

(3)

This simply means that if there is a predefined center in V ′, then
the corresponding centroid defines the geometrical center of the
aggregate, which is used to measure the compactness. Note that
for C = ∅ the problem is the same as the original problem. Be-
cause of this, it is also NP-hard.

3.3 Definition of Centers

To define the set C, we recall that the application of c1 as global
objective is rather unproblematic, i.e., the influence on the size of
aggregates is limited due to strict lower bounds for their weight.
However, it was argued that the geometrical compactness is only
coarsely reflected. We therefore propose a two-steps approach:

1. We solve the problem first, expressing compactness solely
by the distances to a center, i.e., c := c1. Presumably, such
a solution is close to the result wanted by a cartographer.

2. Based on the resulting partition P , we define the set C to
contain one node for each element in P . For this, we chose
the center according to the measure c1. With this definition,
the problem can be solved a second time, this time applying
the following combination of measures:

c := s′ · c3 + (1 − s′) · c2, s′ ∈ [0, 1] (4)

The scalar weight factor s′ is introduced to define a compromise
of the two objectives c3 and c2. We discuss a solution of the
problem in the next section.

4 A MIP FOR AREA AGGREGATION WITH
PREDEFINED CENTERS

Different possibilities exist to model the aggregation problem as
MIP. A difficult task is to express the connectivity of aggregates
by means of variables and linear constraints. Williams (2002) and
Shirabe (2005) have found different solutions for the problem of
ensuring connectivity when selecting a subset of nodes from a
graph. These approaches can be adopted in a straight forward
way to model the aggregation problem, leading to a quadratic
number of variables and constraints. Both methods have been
implemented and tested using the software ILOG CPLEX 9.100
on a Linux server with 4 GB RAM and a 2.2 GHz AMD-CPU.
In conclusion, the obtained running time was prohibitive – the
largest instance that could be solved contained only 30 nodes. An
improvement was made using a new MIP based on a single com-
modity flow model that requires only a linear number of variables
and constraints (Haunert and Wolff, 2006). Still, without heuris-
tics, it was not possible to process more than 50 areas.

Because of these experiences and the absence of existing approx-
imation algorithms, heuristics need to be applied. Therefore we
now define a more restrictive requirement for the connectivity
of aggregates. This leads to an alternative MIP formulation. A
similar approach was used by Zoltners and Sinha (1983) for the
problem of optimally defining sales territories.

4.1 Connectivity based on Precedence Relationship

Evidently, in order to end up with connected parts, a node v can
only be assigned to a distinct center u, if at least one of its neigh-
bors is also assigned to u. However, it is important to note that
this does not suffice. Consider two adjacent nodes being assigned
to the same center: Both nodes will mutually satisfy their require-
ments without ensuring the connectivity to others, i.e., the prob-
lem with the neighbor relationship is that it contains cycles. To
cope with this, we introduce the stricter, acyclic precedence rela-
tionship.

Given a graph G(V, E) with edge lengths α : E → R
+, a center

u ∈ V and a node v ∈ V , u 	= v, we define the set of predeces-
sors of v with respect to center u as

Predu(v) :=

{w ∈ V | D(u , w) < D(u , v) ∧ {v, w} ∈ E} , (5)

with D(i , j) being the length of the shortest path in G from i
to j using edge lengths α. Different possibilities exist for defin-
ing the edge lengths α. The definition which is applied here is
based on the minimal size of a potential aggregate containing u
and v. This definition is discussed in our earlier paper. An exam-
ple for the precedence relationship with the setting of equal edge
length is illustrated in Figure 3(a). Arcs are drawn from each
node v ∈ V to its predecessors Predu(v). The resulting directed
graph is acyclic and the center u is the only terminal. For some
edges of the adjacency graph, both incident nodes have the same
distance to the center. These edges are displayed as dashed lines.
However, when using non-uniform edge lengths, these cases are
rare exceptions.
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u

(a) Precedence
relationship Predu.

(b) A feasible
aggregate according
to Predu.

(c) A connected aggre-
gate that is not feasible
according to Predu.

Figure 3: Precedence relationship with respect to center u (dis-
played as square) and feasibility of aggregates in the presented
MIP.

The definition of the precedence relationship can be used to de-
fine a simple requirement that ensures connectivity of aggregates:
A node may only be assigned to a distinct center if at least one of
its predecessors with respect to this center is also assigned to it.
The constraint clearly forbids disconnected aggregates since the
center can always be reached from an assigned node via prede-
cessors, i.e., without leaving the aggregate. Figure 3(b) shows an
example which satisfies the requirement. However, by defining
this requirement several connected aggregates will be excluded.
An example for this is displayed in Figure 3(c). The aggregate
does not contain any predecessor of the node located in the bot-
tom right corner. Zoltners and Sinha legitimate the restriction of
their model with their preference for compact sales districts: The
non-feasible connected parts likely are non-compact. So, they
can probably be excluded without loosing good solutions. As
we also aim compactness, their model is a reasonable approach.
However, since the optimal solution might be missed, we refer to
it as heuristic. Comparisons with results that were attained with
a model allowing for connectivity in a general sense, i.e., with
our flow model, have shown that this heuristic only marginally
affects the result. The attained results for the objective function
were at most 5% worse than the optimum. The processing time,
however was greatly reduced. As mentioned in the introduction,
our tests were made without consideration of compactness. It is
likely that the results are even closer to the optimum when defin-
ing compactness as additional objective.

4.2 MIP Formulation

In this section, we present a MIP hat models the requirements
and objectives of the problems from Sections 2.1 and 3.2. We
first introduce the formulation as a whole and then explain it in
detail.

xuv ∈ {0, 1} , with xuv = 1 if node v ∈ V

belongs to center u ∈ V .

yue ∈ [0, 1] , with yue = 0 if at least one incident node

of e ∈ E does not belong to center u ∈ V .

Minimize

s·
∑
u∈V

∑
v∈V

w(v) · xuv · d(γ(v), γ(u))

+(1 − s) · s′·
∑
u∈V

∑
v∈V

w(v) · xuv · δ(v, u)

−(1 − s) · (1 − s′)·
∑
u∈V

∑
e∈E

2 · λ(e) · yue

(6)

subject to∑
u∈V

xuv = 1 ∀v ∈ V , (7)

∑
v∈V

w(v) · xuv ≥ θ(γ(u)) · xuu ∀u ∈ V , (8)

∑
w∈Predu(v)

xuw ≥ xuv ∀u , v ∈ V : u 	= v , (9)

yue ≤ xuv

yue ≤ xuw

}
∀u ∈ V, e = {v, w} ∈ E . (10)

The binary variables xuv define the solution of the problem: All
nodes u with xuu = 1 constitute the set of centers that define the
color and geometrical centers of aggregates. To assign a node v to
a center u, xuv needs to be set to 1. The cost for the color change
that is charged for this assignment is defined by the first term in
Equation 6. The second term defines the cost for compactness
according to Equation 1. The third term defines a benefit for each
edge e = {v, w} that is totally contained in one aggregate, i.e.,
there is a center u ∈ V with xuv = 1 and xuw = 1. Auxiliary
variables yue are defined to express this case. Giving a benefit
for interior edges has the same result as charging a cost for the
perimeter, as the objective was defined in Equation 2. The factor
2 is needed, as each edge belongs to the boundaries of two areas.

We now describe our set of constraints. Constraint 7 expresses
that each node must be assigned to exactly one center. Con-
straint 8 does not have any effect for xuu = 0, i.e., if u is not
selected as center. For xuu = 1 it ensures that the aggregate
with center u is weight feasible, i.e., the threshold for the target
scale is satisfied. Constraint 9 ensures connectivity according to
the precedence relationship, as defined in Section 4.1: Node v
can only be assigned to center u if there is also a predecessor w
which is assigned to u. Finally, Constraint 10 is used to couple
the variables xuv and those of type yue: If one of the incident
nodes of e, i.e., v or w, is not assigned to center u, then yue is
forced to be 0 and no benefit will be given. Otherwise, the con-
straint defines that yue ≤ 1. Since a benefit proportional to yue is
given, yue will always take the value of its upper bound. Because
of this yue will be 1 for edges included in aggregates. Thus we
do not have to make yue explicitly a 0-1 variable, which usually
speeds up MIP solvers.

Our MIP models both, the problem from Section 2.1 and the mod-
ified problem with predefined centers. In the second case, it is
possible to simply define xuu = 1 for all u in C. Additional
variables can be fixed after this. To define a MIP without the
restricting precedence relationship, one can simply replace Con-
straint 9 by formulations that have been presented by Williams
(2002) and Shirabe (2005). These, however, require additional
auxiliary variables. In our previous paper, we presented two ad-
ditional heuristics that can be applied to speed up the processing.
The first is to set xuu = 0 for nodes u with very small weights,
i.e., to exclude them from the set of potential centers. The second
heuristic is to set xuv = 0, if the distance between u and v is
large. These heuristics have been formally defined and discussed
in detail. We present results of this method and the addition of
criteria for compactness in the next section.

4.3 Results

We used the presented formulation to express the problem as
a MIP and solved it by application of standard branch-and-cut
methods. The performance was similar to the MIP without the
application of the compactness objective, which has extensively
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been tested in our previous paper. With the presented heuristics it
is possible to solve instances with 400 areas in modest time, i.e.,
less than one hour. Figure 4 shows the same sample as Figure 1,
but this time the proposed measure for compactness was applied
in combination with the objective for minimum class changes.
The resulting aggregates are clearly more compact. As in the
first example, the red settlement was saved by sacrificing smaller
neighbors, but instead of building a narrow bridge to smaller ar-
eas of the same color, a neighbor on the right side was included,
leading to a simpler shape. However, the resulting map certainly
does not constitute a finished product. For example, one would
need to apply a line simplification algorithm to remove further
details. Nevertheless, it is perceived that the formulated optimiza-
tion problem sufficiently models the aims of aggregation.

4.4 Processing Large Data Sets

In the presented form, the method is still not suitable for car-
tographic production, as the expense of time is too high. To
process large datasets we have developed a heuristic approach
(Haunert (2007)). The idea is to predefine each node v ∈ V
with w(v) ≥ θ(γ(v)) as center, i.e., those areas in the original
scale that are sufficiently large for the target scale. Let G′ be the
sub graph of G that is induced by all other nodes, then the ag-
gregation problem with the compactness measures from Section
2.2 can be solved independently for each connected component
of G′. This fact allows to decompose the problem into smaller
instances. However, for our data set, the resulting instances are
still too large to be processed. We have solved this problem by
definition of intermediate size thresholds, such that the number
of predefined centers increases until the problem instances are
manageable, i.e., do not contain more nodes than a user-specified
number k. Via these intermediate scales, the target scale can be
reached in several steps. We have shown that our method gener-
alizes the existing iterative method of van Oosterom (1995), i.e.,
for k := 1 both methods are the same. However, for a complete
map sheet of a topographic map, our method with k := 200 re-
sulted in 20% less class change, 2% less cost for non-compact
shapes and 8% less total cost.

5 CONCLUSION

We have proposed a new method for the aggregation of areas in
a planar subdivision that takes compactness and class similarity
into account and enables the application of mixed-integer pro-
gramming. With this restriction, we could model compactness
only by adding requirements that avoid the creation of too large
aggregates. To define these requirements, we developed a two-
step approach. First we apply a coarse measure of compactness
for the definition of centers and second we create a high-quality
map by applying a more sophisticated measure. The obtained re-
sults showed that this approach satisfies the aims of aggregation
in map generalization. Due to the NP-hardness of the problem,
heuristics needed to be introduced to solve instances of interest-
ing size. We gave an outline of a heuristic approach that decom-
poses the problem into manageable instances.
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