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ABSTRACT:

Today the demands on 3d models are steadily growing. At the same time, the extraction of man-made objects from measurement data
is quite traditional. Often, the processes are still point based, with the exception of a few systems, which allow to automatically fit
simple primitives to measurement data. The need to be able to automatically transform object representations, for example, in order
to generalize their geometry, enforces a structurally rich object description. Likewise, the trend towards more and more detailed rep-
resentations requires to exploit structurally repetitive and symmetric patterns present in man-made objects, in order to make extraction
cost-effective. In this paper, we address the extraction of building facades in terms of a structural description. We extend our former
work on facade reconstruction, which is based on a formal grammar to derive a structural facade description in the form of a derivation
tree and uses a stochastic process based on reversible jump Markov Chain Monte Carlo (rjMCMC) to guide the application of deriva-
tion steps during the construction of the tree. We use measurements to improve the control of the rjMCMC process. This data driven
approach reduces the number of false proposals and therefore the execution time.

1 INTRODUCTION

1.1 Motivation

The extraction of man-made objects from sensor data has a long
history in research (Baltsavias, 2004). Especially for the mod-
elling of 3D buildings, numerous approaches have been reported,
based on monoscopic, stereoscopic, multi-image, and laser scan
techniques. While most of the effort has gone into sensor-specific
extraction procedures, very little work has been done on the struc-
tural description of objects.

Modelling structure though is very important for downstream us-
ability of the data, especially for the automatic derivation of
coarser levels of detail from detailed models.

Representing structure is not only important for the later usability
of the derived data, but also as a means to support the extraction
process itself. A fixed set of structural patterns allows to span
a certain subspace of all possible object patterns, thus forms the
model required to interpret the scene. Patterns can also guide
the measurement process. Especially for man-made structures
such as building facades, a large number of regularity conditions
hold, which can be introduced into the measurement process as
constraints.

Our aim is to extract facade elements from image and range data
automatically. This paper extends our former work on the gram-
mar based extraction of facade descriptions (Ripperda and Bren-
ner, 2006) in which the grammar guides the generation of possi-
ble facade layouts using a reversible jump Markov Chain Monte
Carlo (rjMCMC) process to explore solution space. The rjM-
CMC algorithm is used for other applications e.g. image segmen-
tation as well. Tu et al. (2005) integrated generative and discrim-
inative methods for image parsing. We present a way to derive
distributions of facade attributes like the position of windows.
These distributions are used for the rule proposal to evade the
large number of wrong proposals which where so far only based
on general prior knowledge on facades.

1.2 Related Work

Grammars have been extensively used to model structures. For
modelling plants, Lindenmayer systems were developed by
Prusinkiewicz and Lindenmayer (1990). They have also been
used for modelling streets and buildings (Parish and Müller, 2001;
Marvie et al., 2005). But Lindenmayer systems are not neces-
sarily appropriate for modelling buildings. Buildings differ in
structure from plants and streets, in that they don’t grow in free
space and modelling is more a partition of space than a growth-
like process.

For this reason, other types of grammars have been proposed for
architectural objects. Stiny and Gips (1972) introduced shape
grammars which operate on shapes directly. The rules replace
patterns at a point marked by a special symbol. Mitchell (1990)
describes how grammars are used in architecture. The derivation
is usually done manually, which is why the grammars are not
readily applicable for automatic modelling tools.

Alegre and Dallaert (2004) use a stochastic context free attribute
grammar to reconstruct facades from image data by applying hor-
izontal and vertical cuts.

Wonka et al. (2003) developed a method for automatic modelling
which allows to reconstruct different kinds of buildings using one
rule set. The approach is composed of a split grammar, a large set
of rules, which divide the building into parts, and a control gram-
mar, which guides the propagation and distribution of attributes.
During construction, a stochastic process selects among all ap-
plicable rules.

Dick et al. (2004) introduce a method which generates building
models from measured data, i.e. several images. This approach is
also based on the rjMCMC method. In a stochastic process, 3D
models with semantic information are built. Mayer and Reznik
(2006) also use a MCMC method for the facade reconstruction
from images.
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2 FACADE RECONSTRUCTION USING A GRAMMAR
AND MCMC

2.1 The facade grammar

A grammar is used to model facade structure. The facade is
presented by the derivation tree of the word of the language of
the grammar, which corresponds to the facade. The grammar is
built in a way that the derivation describes a recursive partition of
space. We obtain a partition from the application of a derivation
rule of the split grammar. A derivation tree represents the overall
facade partitioning. Each node of this tree corresponds to one of
the symbols of the grammar. There are two kinds of symbols,
nonterminals and terminals. The terminal symbols represent fa-
cade geometry and cannot be subdivided further. Geometrically,
nonterminals do not represent facade geometry directly but serve
as containers, which hold other objects, represented in the deriva-
tion tree by nonterminal or terminal children.

Some of the containers imply that their children have identical
properties while others don’t (see figure 1). SYMMETRICFA-
CADE indicates symmetries in the facade and can be replaced by
SYMMETRICFACADESIDE which represents the left side and the
mirrored right side of the facade and an optional SYMMETRIC-
FACADEM IDDLE. Implicitly, left and right side have the same
content. In contrast, FACADE implies nothing about its children.
In figure 1 on the right hand side a FACADE is subdivided in two
PARTFACADEs, the upper and lower part, that have no similari-
ties.

Figure 1: Symbols with (left: SYMMETRICFACADE) and without
(right: FACADE) implications to their children.

The start symbol is the symbol FACADE. Starting from it, the
subdivision can be made by rules similar to the ones introduced
by Wonka et al. (2003). The model is expressed as a derivation
tree with FACADE being the root. Derivation rules have a left
side, which consists of one symbol, and a right side, which may
comprise several symbols in a certain spatial layout. As an ex-
ample, a grammar rule splits FACADE into GROUNDFLOOR and
PARTFACADE. Figure 2 shows two examples of the subdivision
of facades. In both cases the facade is subdivided into GROUND-
FLOOR and the upper floors represented by PARTFACADE. The
GROUNDFLOOR is partitioned in different FACADEELEMENTs
that contain a DOOR or a WINDOW each. The upper floors are
modelled in different ways. In the first case it is a SYMMET-
RICPARTFACADE with an IDENTICALFACADEARRAY of WIN-
DOWs inside. In the second case two different IDENTICALFA-
CADEARRAYs with different types of WINDOWs are derived.

The model is described by a parameter vectorθ which contains
the derivation tree and the attributes of the symbols. E.g. the pa-
rameter vector of the configuration in figure 1 right is represented
by the hierarchic structure

θ = Facade(0, 0, w, h, (PartFacade(0, 0, w, hs),

PartFacade(0, hc, w, h − hs))),

wherew andh are the width and hight of the facade andhs is the
height of the split.

Figure 2: Example subdivision of facades.

2.2 Exploration of the Derivation Tree Using RjMCMC

We obtain the model of the facade using a stochastic process. We
are searching for the model given by parameter vectorθ with the
highest probabilityp(θ|DSDI) under given scan(Ds) and image
data(DI) where the parameter vectorθ encodes the current state
of the derivation tree, including attributes.

We use a Markov Chain simulation to obtain the value ofθ. This
simulates a random walk in the space ofθ. The process is led
by a transition kernelJ(θt|θt−1) and converges to a stationary
distributionp(θ|DSDI).

The transition kernelJ(θt|θt−1) assigns a probability to each
rule and is made up from the commonness of the result in a
dataset of facade images and some functions of the processed fa-
cade which will be described later. With the transition kernel in
each iteration a rule is proposed. This is accepted with the accep-
tance probability

α = min(1,
p(θt|DSDI) · J(θt−1|θt)

p(θt−1|DSDI) · J(θt|θt−1)
). (1)

This depends on the unknown distributionp(θt|DSDI). Using
Bayes’ law, this is proportional top(DSDI |θt) · p(θt), a product
of likelihood and prior of the facade.The acceptance probability
decides whether the rule is applied or not.

During the simulation, facade elements are added, deleted or
changed. The first two operations change the number of elements
on the facade and thus the dimension of the parameter vectorθ.
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The basic Markov Chain Monte Carlo method does not support
dimension changes ofθ and therefore we use rjMCMC instead.
This method allows a change in the dimension of the parame-
ter vectorθ and thereby the number of facade elements can vary
during the simulation. The rjMCMC method requires reversibil-
ity. For each change from stateθ1 to stateθ2 there must exist a
reverse change fromθ2 to θ1.

2.3 Jumping Distribution

A change is proposed depending on the jumping distribution
Jt(θt|θt−1) that expresses the likelihood for each change. Each
state change is in one of the following categories:

• Application of a split rule from the grammar. Facade ele-
ments are divided horizontally, vertically or in both direc-
tions and each part becomes a new symbol.The split indi-
cates a change in the facade. If the ground floor differs from
the rest of the facade, a split is applied.

In fact, one grammar rule comprises a set of changes to the
parameter vectorθ, since the associated attributes have to
be chosen, such as the number and size of children. For
example a rule divides FACADE into several PARTFACADEs,
the general rule stands for all rules of this kind with any
number and position of columns. The number of columns
and their width is determined randomly.

• Changes in structure. Even after derivation of new con-
tainers according to the previous step, a second set of state
changes allows to modify parameters, e.g. the number of
rows or the position of the parting lines between rows.The
same can be done starting from a child symbol. The posi-
tion and extent of a symbol may change. In this case, the
neighbour symbols, which are involved in the change, have
to be changed as well.

• Replacement of symbols. This allows to interchange one
symbol in the derivation tree by another symbol. In this
case, the geometry stays the same, but the denotation changes.
This is for example used if a FACADE is declared symmetric.
FACADE → SYMMETRICFACADE

To ensure reversibility, each change can be applied from left to
right and vice versa. This is a difference to the way split gram-
mars are used, but is a requirement for the rjMCMC approach.

We have to define two kinds of distributions. The first one is the
probability to choose a rule and the second one defines the para-
meter like the position of a split line or the number of windows.
At the moment, the probability for rules is assigned manually de-
pending on an assumed likelihood of the result. For example, a
change FACADE → IDENTICALFACADEARRAY is more likely
than FACADE → FACADEARRAY because facades build regular
structures of similar elements. Some hints for the assumptions
are taken from a database of facade images from Hannover.

To determine the parameter for the rules we need information
about the distribution of colour or depth on the facade to control
the split operation and to determine the distribution of the win-
dows. Both depend on regularities and differences. For window
grids we use autocorrelation and for splits a function based on a
norm.

For splitting the facade into parts a change in colour or depth on
a large part of the facade is needed. Other indications are breaks
in regularity. The changes of colour and depth occur in different

scales. We search for changes, which influence a great part of
the facade, or separately changes caused by windows. Smaller
artefacts in the facade may disturb the result. So we have differ-
ent ways to score splits but in each we have to mask the small
changes, which falsify the result. One way to suppress such un-
wanted changes is to use a scale space image (see figure 3). An-
other possibility is to cluster the facade depending on the colour
value and in another step depending on the depth value. The re-
sults are shown in figure 4. From these images we can derive a
probability for the splits. Therefore we compute the norm of two
regions next to the split line (see figure 5 ), the upper regionRu

and the lower regionRl. To evaluate the split line we compute
the norm of the difference of both regions

||Ru − Rl||2 =

√∑
x,y

(Ru(x, y) − Rl(x, y))2,

whereRu(x, y) is the rgb value at position(x, y).

The results are shown in figure 6. For a better visual understand-
ing the original facade image is overlaied to the resulting graph.
With the cluster image (blue line) we achieve better results than
with the scaled image (red line) because on the scale image lines
at top edges of windows are scored better than colour changes
throughout the entire facade.

Figure 3: Image with lower scale maintains only large changes in
facade structure.

Figure 4: Clustered facade calculated by colour value and depth.

Using autocorrelation, we can predict the distribution of win-
dows. We correlate the overlapping parts of the facade image
and a copy of it which we shift horizontally resp. vertically. Fig-
ure 7 shows the result. In the case of a regular window grid the
correlation values show peaks in a regular distance. The num-
ber of peaks is the number of window rows resp. columns plus
one for the identical image plus one for the case when the over-
lap tends towards zero. In the example the horizontal correlation
shows seven peaks because of the seven window columns plus
two for identical and border cases. This pattern is not so clear for
the vertical correlation because of the different ground floor.
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Figure 5: Two regions above and below the tested split line were
moved over the facade.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

0

0,05

0,1

0,15

0,2

0,25

by cluster image
by scaled image

Figure 6: Facade image overlayed with the probability of splits
evaluated by a scaled image and cluster image.

Another operation we can use to determine the window distribu-
tion is the planar segmentation of the scan. We use the segmen-
tation descibed in (Dold and Brenner, 2004). Figure 8 shows the
detected facade planes, but also sone smaller planes detected in
the windows.

More information about the windows is given by point clouds
from different standpoints. The laser beam penetrates the glass
partly and is reflected from inside the building. If we compare
two point clouds from different standpoints the differences mean
windows or points, which can be seen only from one standpoint
(see figure 9). The latter should not occur if we limit the point
cloud to the facade.

To determine the differences we need the registration of the point
clouds. This is the transformation matrix from the coordinate
system of one standpoint to the one of another. We transform one
point cloud in the coordinate system of the other and transform
the cartesic coordinates into polar coordinates. The point cloud
of one standpoint is stored as a raster addressed by polar and az-
imuth angle. Therefore with the received polar and azimuth an-
gle the corresponding scan point can be read. A difference in the
range value means a different point and therefore a window hy-
pothesis. In figure 10 white pixel mean window hypothesis, black
pixels have no corresponding pixel in the second scan and grey
pixels are others.

2.4 Scoring Functions

The scoring functions affect the acceptance probability (eq. 1)
in the termp(DSDI |θt) · p(θt) respectivelyp(DSDI |θt−1) ·
p(θt−1).

Figure 7: Autocorrelation coefficent in horizontal and vertical di-
rection for the facade in figure 5.

Figure 8: Segmentation of the scan leads to different planes for
facade and windows.

For the evaluation we use different methods, which can be di-
vided into two groups. The first group contains methods, which
test the general plausibility of the model of the facade corre-
sponding to the factorp(θt). They depend on the alignment,
the extent and the position of the facade elements. Here we use
the same scoring functions as given in (Dick et al., 2004), which
where described in (Ripperda and Brenner, 2006) as well.

The second group evaluates how good the model fits the data by
comparing it to range and image data corresponding to the first
termp(DSDI |θt). In any case, the evaluation functions return a
score, which builds an acceptance probability for the change. To
determinep(DSDI |θt) we have different possibilities which use
scan and image data. We develope measures for depth and colour
and use correlation, entropy and variance as well.

Depth In the first case, the fact that window points typically lie
behind the facade is exploited. The averaged̄ of the facade depth
is calculated. The variation of the points inside the proposed win-
dow constitutes the measure

αd =

∑
|d − d̄|
A

,

Figure 9: Principal sketch for window hypothesis.
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Figure 10: Window hypothesis from different standpoints.

whereA is the total number of points.αd is typically close to
zero for facade points and large for window points.

Colour In the second case, colour has been used since windows
typically appear darker than the surrounding facade (or in some
cases brighter because of reflections). Here we use the clustered
images as well. We consider one region for the window and a
boundary region (see figure 12 left). LetNmax be the number of
pixels of the largest cluster inside the proposed window region,
N0 the number of unclassified pixels,Awin the area of the win-
dow,Abound the area of the boundary andNbound the number of
pixels of the boundary which belong to the largest cluster inside
the window.αC gives a measure for the window.

αC =
1 + Nmax+N0

Awin
− Nbound

Abound

2

In colour and depth cases, the information is used for the sub-

Figure 11: Score function with the depth cluster method (left) and
color cluster method (right).

division of the facade. A proposed split of a container demands
that the children have different properties.

Correlation In the case of similarity we use the correlation
function (see sec. 2.3). For example, upon division into rows,
the resulting row strips are correlated to determine whether the
split is accepted or not.

Entropy To score arrays of windows we used entropy and vari-
ance for homogeneity measure. Entropy is

I =

n∑
i=1

|Ci|
A

log2

A

|Ci|
,

wheren is the number of clusters,A the total area and|Ci| the
number of points in thei-th cluster. We divide the facade with a
mask like in figure 12, right, according to the proposed array of
windows. Entropy respectivly variance are calculated for white
and gray areas separately.

We test the entropy for different grid positions. The grid has six
degrees of freedom but for a better visualisation we fix the num-
ber of grid points and the distance between them. The results are
shown in figure 13 and 14 on the left hand side. In both figures the
yellow surface is the score of the window part of the facade, the
blue one of the boundary part. In the diagramm for entropy the
boundary part produces the better result because the window part
isn’t as homogeneous as the facade without windows. To obtain
a probability we use the boundary part. The maximum possible
result islog2 n so we normalize the function with this factor. The
probability (see figure 13, right) isαI = 1 − I

log2 n
.

Figure 12: Mask for a single window (left) and an array of win-
dows (right). The window area is white and the boundary area
gray.

Figure 13: Entropy of window (blue) and boundary (yellow) and
the probability derived from the window entropy.

Variance For another homogeneity measure, the variance, we
use the original facade image because cluster labels are artificial
numbers which would weight the differences arbitrarily. With
this measure the boundary part of the facade leads to good results
while the variance of the window part is higher than the one of
the boundary part or mixed parts. UsingαV = 1−

√
V

255
we get a

probability (see figure 14, right).

Figure 14: Variance of window (blue) and boundary (yellow) and
the probability derived from the boundary variance.

3 RESULTS

We’ve tested the method on facades of dwelling houses. The in-
put data are the point cloud and an orthophoto, which is generated
with the RiScanPro software. The other required data are com-
puted in a first step.

For a better understanding we first test parts of the modelling
process separately. Therefore we cut out a single window. For
this small data set we compute the score for each value and com-
pare the result of the MCMC process (see figure 15) with the
distribution given by the score function (see figure 11).
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Figure 15: Sampled points with the depth cluster method (left)
and color cluster method (right).

In the complete process, windows may not be modelled at the
correct position in early derivations. Figure 16 shows two interim
results of facade models. Not all modelled windows fit to the real
ones. The reason is the assumption that the windows are arranged
in a regular grid, which is not true. After further derivation steps
the facade part is subdivided and single parts contain a regular
grid. It is also possible that the grid pattern changes. Figure
17 shows a model of the right facade from figure 16. This final
model uses a grid of window pairs and reproduces the facade in a
better way.

Figure 16: Displaced windows because of the wrong assumption
of a regular grid.

Figure 17: Facade model with a grid of window pairs.

4 CONCLUSION AND OUTLOOK

In this paper, we have presented an advancement of our previous
work on grammar based facade reconstruction. It also combines
the generation of artificial facade structures using grammars, and
the reconstruction of facades using rjMCMC. Compared to exist-
ing grammar-based approaches, we gain the ability to reconstruct
facades based on measurement data. Compared to existing rjM-
CMC approaches, by using a grammar, we obtain a hierarchical

facade description and the ability to evaluate superstructures such
as regularity and symmetry at an early stage, i.e., before terminal
symbols such as WINDOW are instantiated.

We presented several measures to improve the rule proposals.
These are no longer based only on general prior knowledge of
facades. The measured facade influences the process not only in
the scoring part but also in the proposal part.
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