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ABSTRACT:

Disparity maps estimated using computer vision-derived algorithms usually lack quantitative error estimates. This can be a major
issue when the result is used to measure reliable physical parameters, such as topography for instance. Thus, we developed a new
method to infer the dense disparity map from two images. We use a probabilistic approach in order to compute uncertainties as well.
Within this framework, parameters are described in terms of random variables. We start by defining a generative model for both
raw observed images given all model variables, including disparities. The forward model mainly consists of warping the scene using
B-Splines and adding a radiometric change map. Then we use Bayesian inference to invert and recover the a posteriori probability
density function (pdf) of the disparity map. The main contributions are: The design of an efficient fractal model to take into account
radiometric changes between images; A multigrid processing so as to speed up the optimization process; The use of raw data instead of
orthorectified imagery; Efficient approximation schemes to integrate out unwanted parameters and compute uncertainties on the result.
Three applications could benefit from this disparity inference method: DEM generation from a stereo pair (along or across track),
automatic calibration of pushbroom cameras, and ground deformation estimation from two images at different dates.

1 INTRODUCTION

Computational stereo vision aims at matching pixels from a stereo
image pair; a great number of methods have already been devel-
oped – see (Brown et al., 2003) for a review. A few calculate
dense disparity maps. The majority work along scanlines, assum-
ing images have been rectified beforehand using epipolar geom-
etry to restrict the search space to a single dimension (e.g. hori-
zontal displacements). However, we claim that resampled images
are not suitable for a proper probabilistic inference. We advocate
the processing of raw data instead, because resampling destroys
the independence properties of the noise by creating correlations,
whereas only original pixels can be assumed independent vari-
ables. Therefore we have to estimate disparities in 2D while most
advanced techniques only work in 1D; this is the only way of pre-
serving the integrity of the data and deriving non-biased estima-
tors. Experiments have shown that resampling via classical inter-
polation (whether bilinear or bicubic) induces systematic errors
that can not be neglected when aiming at a sub-pixel accuracy.
Working with raw data shall then result in increased accuracy.

The new approach provides a quantitative measure of uncertainty
while most methods only compute ad-hoc matching or correlation
quality measures. Disparity maps with uncertainties have been
computed (Blake et al., 2003), however this was made possible
by working in 1D. When it comes to robustness to illumination
changes, probabilistic models have been proposed (Zhang et al.,
2006) that rely on an illumination ratio map; this was also possi-
ble by using 1D disparities. Nonparametric approaches based on
mutual information (Hirschmuller, 2005) were developed to han-
dle such changes without having to explicitly model them; how-
ever it is unclear how they can be extended to account for spatially
adaptive changes due to the terrain reflectance without resorting
to a tremendous number of parameters to store the required his-
tograms. In our case, robustness to illumination is achieved via
probabilistic change modeling in 2D and does not require extra
parameters. Techniques based on correlations, robust or not, usu-

ally rely on the choice of a window size which is often arbitrary,
and those involving smoothness priors are often fine tuned manu-
ally; our technique is designed to be entirely automated as neither
window size nor smoothness parameters need to be adjusted.

2 THE FORWARD MODEL

2.1 Deterministic part: rendering

We define the sets of bidimensional indices related to displace-
ment parameters and pixels respectively as Ωθ = {1... nx} ×
{1... ny} and Ωp = {1... Nx}×{1... Ny}. There are N = NxNy

pixels and n = nxny disparity parameters.

The disparity map d is a set of 2D vectors that define a map-
ping from image 1 to image 2; we use a B-Spline representation
(Thévenaz et al., 2000) at scale R parametrized by the coeffi-
cients ∆. The disparity can be set at a coarser scale than the im-
age, so as to allow for a multigrid optimization scheme as shown
in section 4.2. A coverage factor α ∈ [0, 1] is defined for each
pixel, describing the total contribution of the motion model to the
local displacement d, and enabling us to weight each data pixel
according to the ability of the model to predict that pixel.

dp =
X

j∈Ωθ

1

αp
wpj∆j for αp > 0 (1)

where wpj = ϕ

„
1

R
p− j

«
and αp =

X
p∈Ωp

wpj (2)

The 2D kernel ϕ is separable, i.e. ϕ(v) = s(vx) s(vy) where s
is the 1D B-Spline 3 kernel. We define the sampled disparities
Dj = dRj , so that we have D = S∆ where S is the convolution
operator achieving the interpolation for discrete spatial positions
(discrete filter ϕ(p), p ∈ Ωp).

The image X1 is the reference for displacement, i.e. X1 ≡ X ,
whereas the image X2 is obtained by warping X through the
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disparity map using B-Spline interpolation, which is denoted by
W∆(X). This approximation remains valid as long as the map-
ping from image 1 to image 2 preserves the area. This is generally
the case for disparity maps since the displacements can be seen as
local shifts, and the global scaling is rather negligible, especially
in along-track stereo. If we denote the Spline coefficients of X
by L0 such that L0 = S−1X , we have:

X2
p = W∆(X)p =

X
k∈Ωp

L0
k ϕ(p− k − dp) (3)

2.2 Self-similar change modeling

The observed images are denoted by Y 1 and Y 2. Image X1 is
assumed to be the reference, whereas X2 undergoes a radiometric
transformation which models reflectance effects, shadows, and
relatively large-scale changes that can occur between multi-date
observations. We assume all these structured radiometric changes
can be embedded in an additive term C. In this work, we also
assume that C contains the observation noise. To further simplify
the modeling, the noise from both images is embedded in C while
the reference image remains noise-free:

Y 1 = X1 and Y 2 = X2 + C (4)

One could argue that due to surface physics, multiplicative trans-
forms are more likely; in fact, to be really accurate, one should
take into account at least 3 phenomena – a multiplicative field re-
lated to non-Lambertian reflectance properties, clouds and atmo-
spheric transparency, an additive field related to ambient lighting
and atmospheric scattering, and also a nonlinear transfer function
that is not necessarily shift invariant. Multidate changes are even
more complex to describe. Therefore a simple additive term C
shall be a reasonable choice in practice, and we will also assume
X2 and C are independent in the method proposed here.

Change maps can be modeled in various ways. Among all pos-
sible models, few are simple enough to allow for an efficient im-
plementation. We want to take into account two essential prop-
erties: power spectrum decay (high frequency changes are less
likely than the low frequency ones) and spatial adaptivity (there
is no reason all areas behave similarly, as there might be occlu-
sions, shadows or more dramatic changes). We propose to use a
Gaussian fractal process, motivated by the self-similarity of natu-
ral images (Jalobeanu et al., 2003). In the frequency space (where
spatial frequencies are denoted by u and v), all coefficients are in-
dependent Gaussian variables whose variance obey a self-similar
law defined by an energy ε2 and an exponent q:

P (F [C]uv) = N
`
0, ε2 (u2 + v2)−q´

for u, v 6= 0, 0 (5)

We will assume a fractal exponent equal to 1 which is a com-
monly encountered value in natural scenes. In order to remain in
the image space we use Markov Random Fields; this is required
by the spatial adaptivity, best parametrized in the image space and
not in the frequency space. The expression above corresponds
to a diagonal inverse covariance equal to ε−2 (u2 + v2) in the
Fourier space. Its counterpart in the image space is proportional
to the linear operator H:

H = Gt
xGx + Gt

yGy (6)

where Gx and Gy denote the image intensity gradients (finite
differences) in the x and y directions. This is all made possible by
setting q = 1 (non-integer values require fractional derivatives,
whose computational complexity is considerably higher). We set
the gradients to zero on the boundaries. We get:

P (C |λ) =
1

Zλ
e−λ (AC)t H AC (7)

where λ is a smoothness parameter (related to the factor ε) and
Zλ the corresponding normalization coefficient. Using bounded
gradient values enables us to define a proper distribution.

In (7), A is a diagonal matrix that helps achieve spatial adaptivity.
The variance of C is divided by A. The simplest choice consists
of setting A2

p = αp so as to take into account the coverage factor
αp for each pixel p. Indeed, this factor allows us to put a weight
on each data pixel according to the ability of the model to predict
this pixel value. Any pixel not related to the model (i.e. that the
model can not explain) shall have a weight equal to zero so as
to cancel its contribution to the model, which is achieved by an
infinite variance, thus allowing the change map value Cp to grow
arbitrarily large. Conversely, pixels fully covered by the model
(α=1) are not affected.

Other pixel-dependent weights could be included here, such as
a mask allowing to exclude some of the pixels (classified as un-
reliable beforehand) from the inference. The weights could also
be updated recursively by analyzing the change map after each
inference step to make the method more robust.

2.3 A prior disparity map model

To complete the forward model we have yet to define a prior
model for the unknown disparity map. A simple choice is a
smoothness prior having the same fractal properties as the change
model, particularly suitable for disparities related to 3D surfaces
or natural phenomena. To keep the approach as general as pos-
sible we do not consider the epipolar constraint as in (Deriche et
al., 1994) and we set two separate smoothness parameters ωx, ωy

for disparities along each direction.

P (∆ |ω) =
1

ZωxZωy

e−ωx (∆x)tH∗(∆x)−ωy (∆y)tH∗(∆y) (8)

Here Zωx , Zωy denote normalization coefficients. The operator
H∗ can be different from H . In principle, the model should apply
to the disparities D, not to its Spline coefficients ∆. Therefore
we decided to choose H∗ = StHS in order to use a self-similar
prior similar to the change map prior.

We will discuss later how to estimate the smoothness parameters.
There is no immediate need for a prior pdf since these parameters
are substantially overdetermined. They are related to the under-
lying structure of the motion field, a special case being along-
track stereo where the displacement map along x is particularly
smooth, in which case very large values of ωx are expected.

2.4 Forward model and the related Bayesian network

We just defined the elements of a full generative model describing
the formation of an image pair from a single scene X , given a
deformation field ∆, a change map C and a noise variance map
σ2 as well as their respective parameters. A Bayesian network
displays all causality relations (see Fig. 1) and enables us to write
the joint pdf of all model variables as a product of prior pdfs and
conditional pdfs. The conditional pdf of the variables given the
data is proportional to this joint pdf, since the data is fixed.

3 THE INVERSE PROBLEM

Now we need to solve the inverse problem (with respect to the
direct model just defined). In the Bayesian approach (Gelman et
al., 1995), we aim at the determination of the a posteriori pdf,
i.e. the pdf of the variables of interest ∆ given the data Y 1, Y 2,
written as P (∆ |Y 1, Y 2). Three major steps are involved:
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Figure 1: Bayesian network related to the proposed forward model, de-
scribing the formation of the observed images given all model variables.
Nodes with converging arrows represent conditional pdfs, while all other
nodes represent priors. Shaded nodes are fixed (or observed) variables.

• Marginalization, to formally integrate the joint pdf with re-
spect to all variables that are not of interest (also known
as nuisance variables), denoted by Θ = {X, C, λ, ωx, ωy}
such that: P (∆ |Y 1, Y 2) ∝

R
P (Y 1, Y 2, ∆, Θ) dΘ

• Optimization, which aims at finding the values of ∆ that
maximize the posterior pdf (this step might involve the opti-
mization of other quantities as required by marginalization).
In practice an energy function U , defined as the -log of the
marginal posterior pdf, is being minimized.

• Gaussian approximation around the optimum to determine
parametric uncertainties on the result.

3.1 Image resampling and change map marginalization

The observed image Y 2 is now fixed, so we set z2 ≡ Y 2 and
z1 = W∆(Y 1) since we assumed Y 1 ≡ X . If we denote by L
the B-Spline coefficients of Y 1, we have:

z1
p = W∆(Y 1)p =

X
k∈Ωp

Lk ϕ(p− k − dp) (9)

The difference z12 = z2 − z1 defined this way is equal to the
radiometric changes C, according to Eqn. (4). See Fig. 3 for an
illustration. If we had a white Gaussian observation noise instead
of the structured change model (by replacing H with identity),
the obvious procedure would consist of minimizing the classical
sum of squared differences (SSD) between Y 2 and W∆(Y 1). In
general, this SSD-based procedure fails as the changes are spa-
tially structured (hence the use of normalized SSD by some au-
thors, but without explicit radiometric changes). Since we have
two deterministic relations (4), integrating out X and C gives

P (Y 1, Y 2 |∆, λ) ∝ 1

Zλ
e−λ (Az12)t H Az12

(10)

3.2 Estimating the change smoothness parameter

A noninformative, parameter-free prior is assumed for λ since
we have little knowledge about the changes; discussing how to
choose the prior pdf is beyond the scope of this paper. The inte-
gration with respect to λ can be done via the Laplace approxima-
tion as explained in (MacKay, 2003), which amounts to evaluat-
ing a Gaussian integral. The approximation consists of consider-
ing that the -log of the integrand is a quadratic form, defined by an
minimum (location and value) and a curvature at the minimum.
As there is a single parameter for all pixels, the curvature is very
high, therefore the integrand behaves like a Dirac function so this
approximation is valid. To evaluate the integral this way, we need

to calculate the value at the optimum λ̂ (the location itself does
not matter) as well as the second derivative −∂2 log P/∂λ2; the
latter does not depend on ∆ so it simply acts as a constant factor
and is ignored. The optimum is given by

λ̂ =
N

2Φ(A z12)
where Φ(X) = XtHX (11)

We finally get the integrated likelihood for ∆:

P (Y 1, Y 2 |∆) ∝ e−
N
2 log Φ(A z12) with Φ(A z12) 6= 0 (12)

We never have Φ = 0 if R > 1, because z1 and z2 can not be
equal for all pixels since the images are noisy and R > 1 prevents
any over-fitting (there is more than one pixel per parameter).

3.3 Estimating the disparity smoothness

Instead of using the smoothness prior (8) with fixed values of the
parameters ω, which would require a rather complex estimation
procedure to find optimal values (Jalobeanu et al., 2002), we can
use an integrated prior by integrating out ωx and ωy from the very
beginning. This way we lose the benefits of having a quadratic
regularization energy but we make the prior parameter-free. It
also makes the full inference method parameter-free since λ was
already integrated out.

The pdf (8) can be approximated by a Gaussian around its mode
as we did in the previous paragraph, so we apply exactly the same
reasoning as we did with λ (noninformative prior, and Laplace
approximation), which yields:

P (∆) ∝ e−
n
2 log Φ∗(∆x)−n

2 log Φ∗(∆y) (13)

This enables us to finally express the posterior P (∆ |Y 1, Y 2),
proportional to the product of expressions (12) and (13):

P (∆ |Y 1, Y 2) ∝ e−
N
2 log Φ(Az12)−n

2 log Φ∗(∆x)−n
2 log Φ∗(∆y) (14)

A degenerate solution could be found for Φ∗ = 0, since nothing
prevents us from having a perfectly smooth disparity map (for in-
stance ∆x is very smooth in along-track stereo, almost linear in
our tests as shown in the result section on Fig. 4). The interpre-
tation of the posterior pdf (14) needs special care: we should not
seek the global optimum, but rather the most ’significant’ one.
The peak related to degenerate solutions is the highest (in fact,
this posterior is improper, with a singularity at Φ∗ = 0, but it
can be seen as the limit of a sequence of proper pdfs). However
it can be shown by computing the second derivatives that this
peak is very narrow compared to the one related to the acceptable
solution, so that in terms of probability integrated over the corre-
sponding volume, a meaningful, non-degenerate solution is more
probable – even if does not maximize the pdf.

4 PROPOSED ALGORITHM

4.1 A fully unsupervised method

In order to maximize the posterior (14), the energy U needs to be
minimized with respect to the disparity map parameters ∆:

U =
1

2

`
N log Φ(Az12) + n log Φ∗(∆x) + n log Φ∗(∆y)

´
(15)

As mentioned above, special care has to be taken to avoid the po-
tential well around the singularity. This can be effectively done
by replacing log(Φ∗) by log(δ2 + Φ∗) where δ is strictly posi-
tive to avoid the singularity. When the solution is found, δ can be
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set to zero, hoping we escaped the sphere of influence of the sin-
gularity and will now converge to the acceptable solution. One
can also adopt a more careful scheme inspired from graduated
non convexity where δ starts large and is progressively decreased
until it reaches zero, thus ensuring convergence.

The marginalization that helps make the problem parameter-free
does not add much difficulty to the optimization which is already
nonlinear. Indeed, z12 has a nonlinear dependence on ∆ because
of the resampling process. The energy (15) is not quadratic (and
also not convex). Thus, solving this problem needs special han-
dling to avoid local minima and find the desired solution. Simple
Newton-like methods can not be used, and we must resort to a
nonlinear gradient descent. This can be sensitive to the initializa-
tion, hence the multigrid technique discussed in section 4.2.

We choose to use a nonlinear conjugate gradient method (Press
et al., 1993), which only requires the first derivatives of U . The
derivatives of the data term are denoted by ζx:

ζx
j =

∂

∂∆x
j

N

2
log Φ(Az12) =

N

Φ(Az12)
(HAz12)tgx

j (16)

where gx
j is related to the derivative of z12 and is defined as:

(gx
j )p = −αp

∂z1
p

∂∆x
j

= wpjW
∆
∂x(Y 1)p (17)

Here W∆
∂x denotes an interpolation based on the derivative of ϕ,

involving the kernel ϕ′x(v) = s′(vx) s(vy) instead of ϕ:

W∆
∂x(Y 1)p =

X
k

Lk ϕ′x(p− k − dp) (18)

which is computed at the same time as the usual interpolation
W∆. We get similar equations for ∆y . The derivatives of the full
energy (data term and prior) are finally given by:

∂U

∂∆x
j

= ζx
j +

n

Φ∗(∆x)
H∗∆x

j (19)

4.2 Multigrid optimization

The most classical approach to multigrid is to start with a coarse
disparity model (large R), perform the optimization, and refine
recursively by initializing finer scale models with the previous,
coarser scale. This has been applied to image registration in
(Thévenaz et al., 1998). A dyadic scheme is generally used, start-
ing with R = R0 and dividing by 2 at each step. Coarse estimates
are discarded, since they are only used to initialize the next scale.

However, when processing large size images, one had better es-
timate coarse deformation models from subsampled versions of
the input images rather than from the full size images, especially
at very coarse scales. A Spline pyramid (Unser et al., 1993) is
computed for both images Y 1 and Y 2. At each scale, we apply
the inference procedure described above, with a fixed value of R;
the range 2 ≤ R ≤ 8 achieves a good trade-off between model
density and number of data points per parameter. Then, the model
is refined through Spline subdivision since the parameters ∆ are
actually the Spline coefficients of the dense disparity field d. The
refined model is used to initialize the next scale.

4.3 Computing uncertainties

The inverse covariance matrix related to a Gaussian approxima-
tion of the posterior pdf around the optimum ∆ is defined by 4
blocks, related to second derivatives with respect to ∆x and ∆y:

Σ−1
∆ =

„
∂2U/∂∆x∂∆x ∂2U/∂∆x∂∆y

∂2U/∂∆y∂∆x ∂2U/∂∆y∂∆y

«
∆=∆̂

(20)

Using the first derivatives previously calculated (16)-(18) and as-
suming a locally linear resampling process W∆, we get:

∂2U

∂∆x
k∂∆x

l

' N

Φ(Az12)
(gx

k)tH(gx
l )− 1

N
ζx

k ζx
l +

n

Φ∗(∆x)
H∗

(21)
where all expressions are evaluated at ∆ = ∆̂. We obtain a
similar expression for ∆y

k and ∆y
l . The cross-terms are:

∂2U

∂∆x
k∂∆y

l

' N

Φ(Az12)
(gx

k)tH(gy
l )− 1

N
ζx

k ζy
l (22)

The quadratic form is utHv = (Gxu)t(Gxv) + (Gyu)t(Gyv).

For most applications, we need uncertainties on the disparities
D = S∆ (in practice the optimization is simpler to perform with
respect to ∆, this is why we do not use D in the first place). If we
need Σ−1

D rather than Σ−1
∆ , the following expression can be used

for the conversion:
Σ−1

D = (S−1)t Σ−1
∆ (S−1) (23)

where S−1 is the operator that transforms a vector into a series
of Spline coefficients, which can be implemented very efficiently
(Thévenaz et al., 2000). Notice that this is only needed once the
optimization procedure has been completed, therefore does not
affect the computational cost of the disparity estimation itself.

In principle, uncertainties are expressed through variances and
covariances, which have a physical meaning: the former directly
relates to confidence intervals on the estimated parameters, and
the latter give the correlation between model variables. How-
ever, the matrix (20) needs to be inverted, which is difficult in
practice because of its size (2n× 2n). Therefore we approxi-
mate covariances between neighboring disparity parameters by
neglecting long-range interactions.

For each covariance to be computed between variables indexed
by i and j, we select a small block of the matrix Σ−1 by picking
only the entries for variables directly connected to i and j. Ob-
viously, in the inversion, variables that do not interact shall not
be involved in the computation. In practice, for a given spatial
position j (diagonal elements of each block of Σ, related to ∆x

j

and ∆y
j ) if we restrict to the 8 nearest neighbors j + (±1,±1) for

both ∆x and ∆y , we only need to invert a 18×18 matrix. With 4
nearest neighbors the size of the matrix reduces to 10× 10. This
has to be repeated for each spatial location k. Notice that efficient
iterative optimization techniques can advantageously replace ma-
trix inversion (Jalobeanu and Gutiérrez, 2007).

If uncertainties do not need to be interpreted, but rather stored
and propagated through to other processing algorithms, the in-
version can be avoided: only the inverse covariance matrix needs
to be propagated. If there are too many terms it can be simplified
so as to limit the redundancy of the end result; for instance one
can provide inverse covariances related to the 4 nearest neighbor
∆ variables, which only requires to store and propagate 7 extra
terms for each location j (in addition to the estimates ∆̂x

j and
∆̂y

j ); refer to table 1 for details.

Self Σ−1 xx
j,j , Σ−1 yy

j,j

Cross (xy) Σ−1 xy
j,j

Horizontal Σ−1 xx
j+(1,0),j , Σ−1 yy

j+(1,0),j

Vertical Σ−1 xx
j,j+(0,1), Σ−1 yy

j,j+(0,1)

Table 1: Uncertainty terms (inverse covariances, limited to 4 nearest
neighbor interactions) produced by the proposed disparity inference al-
gorithm, after inverse covariance simplification.
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5 PRELIMINARY RESULTS AND DISCUSSION

5.1 Tests on real Mars Express images

We chose a test area extracted from a raw panchromatic, along-
track stereo pair taken by the Mars Express HRSC instrument
(ESA). The image was downsampled by a factor 8 using a Spline
pyramid (preserving noise statistics) to ensure small displace-
ments (<10 pixels) then a study area was selected (N = 64×64,
see Fig. 2). The initial disparity maps were Dx = linear func-
tion of x and Dy = 0. A radius R = 4 was chosen for the model
resolution (n = 16×16). Convergence was reached in less than
50 iterations for this particular initialization; a multigrid strategy
would significantly reduce this number, however the purpose of
the test is to check the validity of the proposed energy functional
(15) rather than study how to minimize it most efficiently.

Figure 2: Left: Y 1; right: Y 2. ESA Mars Express HRSC Orbit 0905
(stereo s12/s22), subsampling factor 8, extracted region 64×64 pixels.

Figure 3: Left: W∆(Y 1) (Y 1 warped using the estimated disparity
map); right: corresponding change map C = Y 2 −W∆(Y 1), contrast
enhanced (factor 10) to display the effects of non-Lambertian reflectance.

Fig. 4 displays the estimated disparities Dx and Dy; obviously
Dx is unrelated to the topography and appears very smooth. Un-
certainties also shown (bottom Fig. 4) are preliminary results; we
only show the inverse of the diagonal of Σ−1

D without the cross-
terms, however these preliminary error maps already carry valu-
able information that can be interpreted as error bars on Dx and
Dy (standard deviation). It clearly illustrates the spatial variabil-
ity of errors; the higher the contrast of radiometric features (e.g.
texture, edges), the lower the uncertainty. It falls below 0.1 pixel
as long as there are enough details, and well below 0.05 pixel
near edges, whereas it can reach 0.3 pixel in the smoothest ar-
eas. Notice that these estimates do not depend on the observation
noise parameters, which are unknown, nonetheless they exploit
the available statistics throughout the inference procedure. No-
tice also that there is no available ground truth for disparities.

5.2 Application to 3D reconstruction

If the imaging geometry is known and reliable (e.g. attitude and
position of the satellite computed from the metadata), then 2D
displacements can be directly converted into 1D heights, which
amounts to projecting the 2D pdfs of disparities to get 1D pdfs

min max

Figure 4: Top: estimated disparities (left: Dx, range=[0,9], right: Dy ,
range=[3.5,-1.5]); bottom: related standard deviations, range=[0,0.3].

of elevations. This will provide a DEM as a height field (longi-
tude, latitude and elevation) where the sampling corresponds to
the pixels of image Y 2, most probably irregular on the ground.
Therefore it needs to be resampled on a regular grid (again we
recommend B-Spline interpolation), and the uncertainties need
to be converted accordingly using an equation similar to (23).
The same process applies to pixel values from both input images
in order to achieve orthorectification, which amounts to provid-
ing a textured terrain model using reflected radiance maps. As
opposed to traditional orthorectification techniques, this should
be done using probability theory, which produces uncertain and
correlated pixel values as the estimated elevations are also uncer-
tain. Moreover, the resampling may also produce a blur due to
the geometric uncertainty related to probabilistic elevations.

5.3 Application to automatic camera calibration

Remote sensing images are acquired with pushbroom systems
whose parameters are not always well-known. Even if a reason-
ably accurate calibration can be achieved through star-based op-
tical navigation or using onboard sensors, applications aiming at
a sub-pixel precision can not rely on it. Indeed, the orbital mo-
tion is affected by high-frequency vibrations whose parameters
are unknown in general. Imperfect trajectory and attitude models
derived from the metadata lead to systematic errors in 3D recon-
struction that are often inconsistent with the recorded data.

Why not use the data directly without making complex calcula-
tions involving a geometry that is not well constrained? If a dense
disparity map D is provided as well as the related errors and cor-
relations summarized by Σ−1

D , it should be possible to recover
relative camera motion without any other source of information.
This has been achieved for approximate, linear camera models
(Gupta and Hartley, 1997). Once the relative motion model has
been inferred (parameter values as well as their uncertainties can
be computed using a probabilistic approach), a relative DEM can
be reconstructed in the camera space. It then needs to be con-
verted into the world space using ground control points; however,
even without such absolute knowledge, the relative DEM is still
a valuable product that makes use of all the radiometric informa-
tion contained in the stereo pair and its quality is not dependent
on possibly misestimated calibration parameters.
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While relative camera calibration for rigid detector arrays has
been thoroughly investigated in the field of stereo vision (Deriche
et al., 1994), the application to pushbroom sensors is still a open
research area, especially from the probabilistic point of view.

5.4 Application to ground deformation

There are two main types of ground deformation that would re-
quire precise monitoring: gravitational motions (e.g., landslides)
and tectonic-driven motions (e.g., co- and/or post-seismic de-
formation fields). As reviewed in (Delacourt et al., 2004), cur-
rently, most of the techniques for monitoring landslide displace-
ment are derived from measurements of reference stations (tri-
angulation, tacheometry and GPS measurements). The database
of movement provided by these techniques is available only for
major landslides for a time span not exceeding 20 years for laser
measurements and less than 15 years for GPS. Moreover, due to
spatial and temporal heterogeneities of the displacements, such
ground based measurements are not sufficient to describe fully
the velocity field of a landslide. Remote sensing imagery is a
powerful tool for landslide monitoring because it offers a synop-
tic view that can be repeated at different time intervals. This is
also the case for very localized slow tectonic motion. Differen-
tial SAR interferometry (DINSAR) has shown its capability for
deriving high accuracy maps (at centimeter level) of landslide dis-
placement (Fruneau et al., 1996). However, this technique is af-
fected by severe geometrical and environmental limitations (e.g.,
loss of coherence due to vegetation). Moreover, the SAR image
database is limited to 1991, and later.

In recent years, new techniques based on the correlation of satel-
lite optical images for the processing of deformation maps have
been developed. Those techniques have been successfully ap-
plied to the measurement of coseismic deformation and comple-
ment InSar techniques in particular close to the fault surface trace
where no interferogram can be computed. The same techniques
were applied to the long-term monitoring of landslides by com-
bining aerial images acquired at different times and very high
resolution satellite images (QuickBird). Using a pair of SPOT
panchromatic images, (Van Puymbroeck et al., 2000) showed that
sub-pixel correlation could provide fault slip measurements with
an accuracy of 0.1 pixel (1 meter) (Michel and Avouac, 2002).
The approach of (Van Puymbroeck et al., 2000) first consists in
resampling the SPOT images into a map projection so that the re-
maining image pixel offsets are only due to the earthquake ground
deformation. In a second step, the coseismic offset map and its
error estimate are computed from the phase shift of the Fourier
transform of a sliding window. In (Binet and Bollinger, 2005),
the method was adapted to SPOT 5 images and the correlation
window size used was 256 pixels and the window step was 64
pixels in both directions. Attempts in reducing the window size
lead to a noisy offset map near the fault because of the temporal
decorrelation and of the low contrast of the ground.

What we want with our approach is 1) to break free from the
initial assumption of a rigid motion within each window, 2) to
take into account the changes, 3) to compute covariance maps.
Indeed, this is required to combine the analysis of real surface
deformation information and probabilistic geophysical modeling.

6 CONCLUSIONS AND FUTURE WORK

Our long-term goal can be described as fully automated prob-
abilistic Digital Terrain Model (DTM) generation from uncali-
brated stereo pairs (possibly from more than two images). This is
part of the SpaceFusion project, funded by the French Research

Agency (ANR); its goal is to combine multiple data to infer the
topography, then to fuse the radiometry information into a well-
sampled, single reflectance map. A valuable by-product of this
project is the determination of 3D deformation fields with er-
ror maps if the 3D reconstruction is performed from stereo pairs
taken at different dates. This way one can measure the ground
motion or the evolution of the topography for analysis or mon-
itoring purposes. To efficiently handle occlusions and abrupt
changes, the forward model will need to be extended to allow
for spatially adaptive noise statistics, for a better robustness.
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