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ABSTRACT:

In this paper we present an approach for the detection of persons in point clouds gathered by mobile laser scanning (MLS) systems.
The approach consists of a preprocessing and the actual detection. The main task of the preprocessing is to reduce the amount of data
which has to be processed by the detection. To fulfill this task, the preprocessing consists of ground removal, segmentation and several
filters. The detection is based on an implicit shape models (ISM) approach which is an extension to bag-of-words approaches. For
this detection method, it is sufficient to work with a small amount of training data. Although in this paper we focus on the detection
of persons, our approach is able to detect multiple classes of objects in point clouds. Using a parameterization of the approach which
offers a good compromise between detection and runtime performance, we are able to achieve a precision of 0.68 and a recall of 0.76
while having a average runtime of 370ms per single scan rotation of the rotating head of a typical MLS sensor.

1. INTRODUCTION

The detection of pedestrians (or more general persons) in data
which are gathered by mobile laser scanning (MLS) systems is a
useful functionality for several use cases. It is, for example, help-
ful for the save navigation of an autonomous vehicle or the save
operation of an autonomous machine in the vicinity of people.
It can also be part of a driver assistance system or an assistance
system for the operator of a large machine. Such an assistance
system could increase the safety of operation if such a machine is
used around people. Of course there are also many use cases in
the area of human-robot interaction.

Unlike the general detection of obstacles or moving objects, the
actual detection of people allows paying particular attention to
their safety. An autonomous vehicle can, for example, keep an
extra distance to persons or, if a collision could not be avoided, it
could be preferable to collide with a wall instead with a person.

There are several challenges to deal with for the detection of per-
sons in use cases like the ones mentioned above. One is that
even with modern mobile laser scanning systems the resulting
data density of single scans is comparatively low so that often a
person is only comprised of 100 - 200 single point measurements.
This is demonstrated in Figure 1, which shows a person in differ-
ent distances in single scans of a LiDAR sensor which is typically
used in MLS systems. Another challenge is that many of the use
cases depend on real time processing, meaning that the person
detection method should be able to process data in the speed of
data acquisition. This limits the computational complexity of the
method.

2. RELATED WORK

There are several existing approaches to detect persons or more
generally speaking, recognize certain object classes in LiDAR-
∗Corresponding author

(a) 7.2m distance (b) 12m distance (c) 19.5m distance

Figure 1. Person in a single scan of a Velodyne HDL-64E
LiDAR in different distances.

or other 3D data. One group of such approaches utilize support
vector machines (SVM) as a classifier. This classifier is trained
by determining a hyperplane in feature space which separates dif-
ferent classes from each other. The hyperplane is then used for
the classification of certain data segments. Navarro-Serment et
al. (2010) for example present an approach to detect persons in
LiDAR point clouds which uses two consecutive SVMs. For the
first one, the input are several geometric features, which are cre-
ated by projecting the data on two different 2-dimensional planes.
These planes are created by the first and the second and the first
and the third eigenvector of the data. The result of this first SVM
is supplemented with several tracking features and used as input
for the second SVM, which then generates the actual output of the
approach. In another approach, a SVM is used to detect pedes-
trians in a depth image which is created by combining a LiDAR
scan with an RGB image by upsampling the scan into the image
(Premebida et al., 2014).
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Another kind of classifiers are random decision forests. These
utilize several decision trees at once and train them with a cer-
tain random element. This allows them to deal with the problem
of overfitting. Their classification result is generated by merg-
ing the results of the different decision trees. They are, for ex-
ample, used to detect persons and body parts of the persons in
depth images generated by Microsoft’s KINECT sensor by clas-
sifying each pixel of the depth image. They are able to do that in
the speed of data acquisition but need depth images with a suf-
ficiently high resolution and a large amount of training datasets
(Shotton et al., 2011, 2013).

In recent years, in the field of image-based object recognition
a lot of approaches emerged which are based on deep learning
and convolutional neural networks (CNNs). These approaches
have already been transfered to the area of object recognition in
LiDAR-data using either a representation of the data as depth im-
ages (Socher et al., 2012) or as volumetric models (Maturana and
Scherer, 2015).

Bag-of-words approaches are also widely used to solve classifi-
cation and recognition problems. These approaches utilize a dic-
tionary with geometrical words. These words are described by a
feature descriptor and vote for certain classes. In the classification
process, feature descriptors are generated for the processed data
and then mapped to words of the dictionary which have a simi-
lar descriptor. After that a voting process takes place to classify
the data based on the votes of the mapped words. Behley et al.
(2013) use several bag-of-words classifiers in parallel which have
differently parameterized descriptors. The results of the multiple
classifiers are merged later on. The advantage of using multi-
ple bag-of-words classifiers is that they are able to parameterize
them to be optimal for different classes and properties of the point
cloud segments to classify, like for example different point den-
sities.

Bag-of-words approaches normally do not consider the geomet-
rical distribution and position which the feature descriptors have
in the data to classify. There are modifications to the classical
bag-of-words method which overcome this disadvantage. One
example for that are implicit shape models (ISM) in which each
word not only votes for a class but also for a position of the clas-
sified object. As part of the voting process, such approaches then
look for positions at which votes for a certain class converge to
recognize an object. ISM were originally developed to be used
on images (Leibe et al., 2008) and were successfully used to de-
tect persons in them (Jüngling and Arens, 2011). Later they were
modified to be used on 3D data. Knopp et al. (2010) presented an
3D ISM approach for general object recognition. This approach
uses 3D SURF features which are calculated for a set of well
picked interest points. Velizhev et al. (2012) also use an ISM ap-
proach to detect cars and light poles in 3D point clouds of urban
environments. Instead of picking out interest points, they calcu-
late a large amount of the simpler spin images feature descrip-
tor. This descriptor was first presented by Johnson and Hebert
(1999). Another ISM approach to detect persons in 3D point
clouds is presented by Spinello et al. (2010). In this approach the
point clouds are divided into several horizontally stacked layers.
Then for each layer segments and features are determined using
methods which are normally used for point clouds of 2D LiDAR
sensors. After that, the feature descriptors of all layers vote for
object positions in the 3D space. Thus, this approach transfers
methods for processing 2D LiDAR point clouds to process 3D
point clouds.

3. OUR APPROACH

In this section we describe our approach for the detection of per-
sons in 3D LiDAR data. For our approach we assume that the
data are provided as general 3D point clouds. This allows us to
work also with unstructured point clouds, which result from mul-
tiple sensors with different view points. One design criterion of
our approach is that it should be able to process the data in the
speed of the data acquisition. We also try to work with only a
small amount of training data.

A diagram of the approach is shown in Figure 2. It consists of
a preprocessing and the actual detection of persons. The prepro-
cessing allows us to reduce the amount of data early on with sev-
eral lightweight algorithms. This should increase the overall pro-
cessing speed. The output of the preprocessing are several point
cloud segments which could represent a person. These segments
are then classified in the classes person and no person using an
ISM approach.

Figure 2. Schematic diagram of our approach

3.1 Preprocessing

The preprocessing is divided into the three consecutive steps: Re-
moval of ground, segmentation and filtering of the segments. Each
of these steps is described in this section.

3.1.1 Ground removal The first step of the preprocessing is
the removal of the ground. This serves two purposes. It greatly
reduces the amount of data and it enables us to properly perform
a segmentation in the next step, since otherwise most segments
would be connected by the ground. For the ground removal we
first generate a ground grid, which describes the surface of the
ground. Afterwards we remove every point which is within a
certain distance from this grid.

For the generation of the ground grid we assume that we have a
height axis in our input data (usually the z-axis). We also assume
that the ground is at the bottom of our point cloud. But we are
able to deal with a small amount of outliers which are below the
actual ground. At first we iterate over the point cloud and group
the points in 2-dimensional grid cells according to their coordi-
nates on the x- and y-axis. For each cell we sort the points of that
cell according to their coordinate on the height axis and use the
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value of the 0.05 quantile as height value of the cell. The 0.05
quantile is used to deal with outliers inside that cell.

After we have determined a height value for each cell, we have to
evaluate which cells actually contain any ground, since there are
cells which contain no ground at all. To do that we recursively
traverse the grid originating from a start cell. While traversing, it
is checked for the current cell which of its neighboring cells could
be reached. A cell counts as reachable if the height difference
between it and the current cell does not violate a parameter for the
maximum steepness of the ground. Every reachable cell will be
traversed and used as a current cell later on, until there are no (not
already traversed) reachable cells left. Cells which could not be
reached while traversing are removed from the ground grid since
we assume that they do not contain any ground. For determining
the start cell three criteria are used:

1. The height value of the cell should be between the 0.05 and
0.15 quantile of the height values of all cells. This is done
to make sure that the start cell contains ground and to deal
with potential outlier cells which have a height value below
the actual ground.

2. The number of reachable neighboring cells. Cells with a
high amount of reachable neighbors are preferred as start
cell.

3. The distance to the center of the grid. Cells near the center
are preferred.

3.1.2 Segmentation and filtering As soon as the ground is
removed, we perform a region growing segmentation based on
the Euclidean distance. After this step points which are part of
the same object should be part of the same segment. The seg-
ments are then filtered based on several criteria which can be de-
termined with low computational cost. The purpose of this is to
reduce the amount of segments which have to be processed by the
computationally more expensive detection process.

The first filter which is applied removes segments with only
a small amount of points since such segments do not contain
enough information to be successfully classified. The second fil-
ter uses the geometrical aspect ratio of the segments to remove
segments which are basically long lines. For such segments we
can say that they are no person. A third filter removes segments
which are either too small or too large to be a person.

3.2 Person detection

For the detection of persons in the resulting segments of the pre-
processing we use an ISM approach. Such an approach allows
us to work with small amounts of training data (Velizhev et al.,
2012). In our opinion it has also great potential in dealing with a
low point density and is able to process data fast enough to keep
up with the data acquisition speed of a MLS system. These are
the challenges which we have mentioned in Section 1.

In this section we first give an overview of our approach and its
processing steps while detecting objects in the data. Then we will
cover several aspects of the approach in greater detail. Although
we currently only detect persons, the approach itself is able to
detect various kinds of object classes. The processing steps of
our approach are:

1. Generation of a feature descriptor for each point of each seg-
ment.

2. Search for the best matching geometrical word in the dic-
tionary for each descriptor. For this we use a search index
for approximate nearest neighbor searches which is based
on the approach presented by Muja and Lowe (2009).

3. Each word of the previous step casts one or more votes for
the position of an object of a specific class. This is shown in
Figure 3a in a simplified way. Actually every point would
have a matching word and cast votes.

4. Rating of the potential object positions for which there are
votes. Each vote has a weight in the dictionary. In this step
the weight of every potential object position is determined
by taking into account the weight of the vote which has
voted for the position itself and the weight of votes which
have voted for positions for the same object class in the
vicinity of the potential position. This step is illustrated in
Figure 3b. The size of the dots represents their rating.

5. Removal of all potential object positions which have a
weight below a certain threshold (Figure 3c).

6. Merge of the remaining potential object positions for the
same class which are in a certain distance from each other
(Figure 3d). This acts as a non-maxima suppression and is
done by using a region-growing-like method for the poten-
tial positions.

7. Output of the resulting object positions as recognized ob-
jects.

3.2.1 Feature descriptor The feature descriptor is used to de-
scribe local parts of the segments which should be classified and
the geometric words in the dictionary. As mentioned in Section
2, there are different strategies for the computing of feature de-
scriptors in ISM approaches. One is to use fewer but more de-
scriptive descriptors which are computed for well picked interest
points (Knopp et al., 2010). Another one is to use a less descrip-
tive but faster to compute descriptor and compute it either for a
large amount of randomly picked points or for all points of the
processed segment (Velizhev et al., 2012). We have decided to
use the second strategy since it can deal better with noise and oc-
clusions (Velizhev et al., 2012) which are quite common in point
clouds generated by single MLS scans. Hence we use a spin im-
age descriptor (Johnson and Hebert, 1999) which we compute for
every point of the segments.

3.2.2 Training and structure of the dictionary The training
process uses segments that are already classified to generate the
dictionary of geometric words which is later used by the detector.
Each geometric word consists of a feature descriptor and at least
one vote. On the other hand a vote consists of the class for which
the vote is a 3D vector to the voted object position and a weight
factor which is between 0 and 1.

In the training process a descriptor is computed for each point in
each training segment. After that, this descriptor together with a
vector from the point to the position (center) of the training seg-
ment and the class information of the segment are used to initial-
ize a new geometric word with one vote for the class and position.
The weight of this vote is initialized with 1.

After all training segments have been processed, a k-means clus-
tering of the generated words is performed in the feature space of
their descriptors. This clustering puts together words with similar
descriptors and is used to merge such words which will then have
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(a) Geometric words have
casted votes

(b) Potential positions are rated

(c) Threshold is applied (d) Remaining potential
positions in a certain radius

merged

Figure 3. Illustration of the main processing step of our person
detection

their average descriptor as the descriptor of the merged word. By
changing the k parameter of the k-means clustering it is possible
to control the size of the resulting dictionary.

After merging, the words will have more than one vote since they
inherit all the votes of the original words. These votes are now
clustered and merged according to their position vector. This is
performed separately for each class for which there are votes. For
the clustering of the votes, we use a bottom-up complete linkage
hierarchical clustering which we abort if the distance for the next
best merge is higher than a threshold. The position vector of the
newly merged votes is the average position vector of their original
votes. In a final step we recalculate the vote weight for each vote
of the merged words:

Wv(wi) =
1

Nv(wi)
(1)

where Wv(wi) = Weight for each vote of word wi

Nv(wi) = Number of votes of word wi

This ensures that the total vote weight of each word is 1. This

means that votes of words which only cast one or a few votes
have a higher weight than votes of words which cast many dif-
ferent votes. Thereby we favor more descriptive words over less
descriptive ones.

For the resulting dictionary a search index in the feature space is
generated which is later used to find the matching words for fea-
ture descriptors. For this search index the approach presented by
Muja and Lowe (2009) is utilized. This method allows fast ap-
proximate nearest neighbor searches in high-dimensional spaces.
It automatically decides between a algorithm based on random-
ized kd-trees and one based on hierarchical k-means trees and
parameterizes them given a desired precision and weight factors
for memory usage and index build time.

3.2.3 Rating of potential object positions As already men-
tioned in Section 3.2, the rating of the potential object positions is
step four of our detection process and takes place after each geo-
metrical word, matched with the segment which is currently been
processed, has cast its votes. It serves the purpose of determining
which of the potential object positions is the position of an actual
object. For this we use the soft voting scheme: It is assumed that
a high vote weight lays either at or in the vicinity of an actual ob-
ject position. At the beginning of this step each potential position
has the weight of the vote, which originally voted for it (Figure
3a).

At first we determine a normalization factor to limit the total
weight of all potential positions to 1:

Wnorm =
1∑

p∈P
Wp

(2)

where Wnorm = Normalization factor
Wp = Weight of position p
P = All potential object positions

Afterwards the weight of each potential position is recalculated
by taking into account its original weight, the normalization fac-
tor and a fraction of the weight of other potential positions for the
same class in its vicinity (Figure 3b). This fraction is influenced
by the distance between the two positions using the Gaussian nor-
mal distribution. So the new weight is calculated as follows:

Rp =
∑
k∈K

Wk ·Wnorm · e−
Dpk

2

2σ2 (3)

where Rp = Rated weight of position p
K = All potential positions with same class as p
Wk = Weight of position k
Wnorm = Normalization factor as defined in (2)
Dpk = Euclidean distance between positions p and k
σ = Determines the width of the normal distribution

By changing the factor σ we are able to control how fast the in-
fluence of neighboring positions will decrease while the distance
increases. To increase the processing speed we ignore positions
with a distance greater than 2σ in the actual implementation of
the approach.
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4. EXPERIMENTS

This section describes several experiments which we have per-
formed to determine the performance of our approach. The ex-
periments cover the influence which the main parameters of the
approach have on the runtime and the detection performance. The
influence of the used feature descriptor type and its parameters is
not examined but we plan to do a comprehensive analysis on that
in a future work. At first we will explain our experimental setup
and then present and discuss our results.

4.1 Experimental setup

For our experiments we used data which we have acquired with
the measurement vehicle ”MODISSA”1. This vehicle is shown
in Figure 4. It is equipped with several LiDAR sensors of which
we used the two Velodyne HDL-64E mounted on the roof in the
front of the vehicle. These sensors are capable of performing 1.3
million measurements per second in a range up to 120 meters.
Their vertical field of view is 26.9◦ which is divided into 64 scan
lines. Since they have a rotating head, their horizontal field of
view is 360◦. In our setup they rotated with 10Hz and we con-
sidered every rotation as a single scan respectively point cloud.
This means every point cloud consists of approximately 130.000
measurements. Since not every measurement is successful, for
example if it is in the direction of the sky, the resulting point
clouds are usually smaller. The vehicle is also equipped with an
inertial measurement unit (IMU) and two GNSS receivers. These
are used to compensate for the movement of the vehicle while
acquiring data which prevents distortion effects.

Figure 4. Measurement vehicle MODISSA. Equipped with
several sensors including four LiDAR

For the experiments we used two different datasets. One is taken
on and around the site of the Technical University of Munich in
an urban environment2. The second one contains a staged scene
with a single person. We used the second dataset mainly for train-
ing purposes but parts of that dataset were also used in our evalu-
ation. In total we used 100 point clouds for the evaluation, which
were part of multiple short sequences in both datasets. In each
of these point clouds persons were annotated manually to cre-
ate our ground truth. We distinguish between persons which are
fully visible in the point clouds and persons which are only partly
visible, for example due to occlusions. For the determination of
false negative detections we have ignored persons which are only
partly visible since it is difficult to decide at which point it should
be possible to detect them. Further point clouds were annotated to

1https://www.iosb.fraunhofer.de/servlet/is/42840/
2Data of this measurement campaign can be found at

http://s.fhg.de/mls1

create a dataset to train our detector. The training dataset contains
244 segments which are a person and 387 examples of segments
which are not a person. So our training dataset was comparatively
small.

To annotate point clouds for the ground truth and the training
data we have processed them with our preprocessing (Section 3.1)
and then manually classified the segments. Although this method
allows us to annotate point clouds fast and easy, it prohibits us
from evaluating the quality of the preprocessing itself. For this
we plan to do another analysis in the future.

To evaluate the detection performance of our approach we use the
indicators precision and recall which are defined as follows:

Precision =
tp

tp+ fp
(4)

Recall =
tp

tp+ fn
(5)

where tp = True positive detections
fp = False positive detections
fn = False negative detections

The experiments were conducted on a computer with an Intel
Core i7-6900k CPU which has 8 cores and can process 16 threads
parallel due to hyper-threading. The computer has 64GB mem-
ory which is far more than needed. The implementation of our
approach uses parallel processing and is therefore able to profit
from the multiple parallel threads of the CPU.

4.2 Results and discussion

This section covers the results of the evaluation of several aspects
of our approach.

4.2.1 Preprocessing As already mentioned earlier, due to the
method we have used to generate our ground truth data we are
not able to evaluate our preprocessing quality-wise. But we have
analyzed to which extend it fulfills its main purpose of reducing
the amount of data to process later on. For this we have ana-
lyzed the amount of points which remain after each step of the
preprocessing. The results are listed in Table 1. It shows that on
average only 2.25% of the original point clouds remain after the
preprocessing. This is also shown by the example in Figure 5.

Avg. num. of pts. Percentage
Unprocessed data 97881 100.00%
Ground removal 53465 54.62%
Number of points filter 41730 42.63%
Aspect ratio filter 34412 35.16%
Size filter 2203 2.25%

Table 1. Data reduction in preprocessing

4.2.2 Size of the dictionary The size of the dictionary is one
of the main influence factors of our approach. As explained in
Section 3.2.2, we can control it by changing the value of k in
the k-means clustering. Our training dataset resulted in 263832
geometric words if we do not perform any clustering at all.

At first we evaluated which influence the dictionary size has on
the runtime of our approach by comparing the time which is
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(a) Unprocessed point cloud (b) Ground removed

(c) Segmentation result.
Segments are color coded

(d) Result of filtering

Figure 5. Processing steps of the preprocessing

needed on average to completely process a single point cloud
(preprocessing and detection). This analysis is done by process-
ing the evaluation data with dictionaries in different sizes, but the
same other parameters. The result of this analysis is shown in
Figure 6.
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Figure 6. Influence of the dictionary size on the runtime

The size of the dictionary influences the runtime in two ways:
On the one hand, it becomes more difficult to find the matching
word for the feature descriptor of a point if the dictionary be-
comes more comprehensive. This is the reason why the runtime,
on average, slowly increases with a larger dictionary. On the other
hand, merging more words together means that a single word on
average casts more votes. This is somewhat compensated since
we also merge together similar votes of the same word (Section
3.2.2) but is still a factor. It explains why the average runtime be-
comes very high when the dictionary is too small for the amount
of votes, which is visible on the left of Figure 6.

Figure 7 shows the influence of different dictionary sizes on the

precision and recall of our approach. It is shown that there is a
slightly better detection performance if the size of the dictionary
increases. Therefore we have a trade-off between the runtime and
the detection performance of our approach.
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Figure 7. Precision-Recall curve for different dictionary sizes

4.2.3 Rating of potential object positions As mentioned in
Section 3.2.3 the rating of the potential object positions is another
crucial step in our detection process. It is influenced by the value
of the parameter σ in the formula which is used to calculate the
rated weight of the potential object positions (cf. Equation 3).

To analyze the influence of the σ parameter we have done a simi-
lar runtime analysis like with the influence of the dictionary size.
For this analysis we have used a dictionary with 60000 geometric
words, different values for σ and, otherwise, the same parameters.
As shown in Figure 8, increasing σ also increases the runtime
of the approach. This is to be expected since we consider other
potential positions up to a distance of 2σ while rating a single
position. Therefore increasing σ means that we have to consider
more positions and have to do more calculations for the rating of
a single position. At very high values for σ the curve flattened
since we reach a point at which we often consider nearly all po-
tential positions of the currently processed segment. In that cases
increasing σ further does not increase the complexity of the rating
process anymore.
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Figure 8. Influence of the value of σ on the runtime
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The influence which the parameter σ has on precision and recall
of the approach is shown in Figure 9. As with the dictionary size
the results show that there is a trade-off between the runtime and
the detection performance. It is also shown that a too small σ
greatly decreases the detection performance by only slightly in-
creasing the runtime performance. Therefore too small σ-values
are not viable.
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Figure 9. Precision-Recall curve for different values for σ

4.2.4 Further analysis of the runtime Right now we are not
completely satisfied with the runtime of our approach. As men-
tioned earlier we like to be able to process data with approxi-
mately the speed of acquisition. Therefore we have analyzed our
current approach further to find out which of its components con-
sume how much time. For this we have processed our evaluation
data with a dictionary of 60000 words, a σ of 0.3 for the rating
of potential positions. These values are a reasonable compro-
mise between the runtime and the detection performance. For
this experiment we used 0.17 as threshold for a detection. This
parameterization achieves a precision of 0.68 and a recall of 0.76.
As before we determined the average runtime per point cloud but
this time we break down the runtime for the individual processing
steps of the preprocessing and the object detection. The results
are shown in Table 2.

Avg. runtime Percentage
Ground removal 55.12ms 9.29%
Segmentation 84.35ms 14.21%
Filtering 1.42ms 0.24%
Miscellaneous 5.81ms 0.98%

Preprocessing 146.70ms 24.72%

Compute features 21.14ms 3.56%
Find words and cast votes 252.85ms 42.60%
Rate positions 144.41ms 24.33%
Miscellaneous 28.44ms 4.79%

Object detection 446.84ms 75.28%

Total 593.54ms

Table 2. Average runtime of each processing step for dictionary
of 60000 words and σ of 0.3.

The analysis shows that the search in the dictionary is the most
time consuming processing step in our approach. The time
needed for this step is determined by the parametrization of the
search index and the size of the dictionary as well as the com-
plexity of the feature descriptor. As mentioned earlier we use the

approach presented by Muja and Lowe (2009) as search index for
the dictionary. Until this point we used 0.95 as precision param-
eter of that approach. This means that approximately 95% of the
searches for the best matching word would result in the actual
best matching word. The build time and memory weight we used
is 0 since memory usage is currently no concern of us and we
only build the index once as part of our training. Reducing the
precision of the search index would be a way to increase the run-
time performance of the searches in the dictionary. We performed
an experiment to analyze the impact which a reduced search in-
dex precision has on the runtime and the detection performance
of our approach. For this we repeated the runtime experiment
with different search index precisions and otherwise the same pa-
rameters. The result of this experiment is visible in Figure 10. It
is shown that decreasing the precision of the search index greatly
reduces the runtime of searches in the dictionary. Until a certain
point the influence on the detection performance is minimal. Us-
ing a search index precision of 0.5 reduces the average runtime
of the dictionary searches to 32ms. The total average runtime
in that configuration is approximately 370ms and the achieved
precision and recall still are approximately 0.68 and 0.76.
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Figure 10. Different desired precisions for the search index of
our dictionary and their influence on the detection performance

and the runtime of searches in the dictionary

Since we already have used a nearly optimal dictionary size for
the given parameters, the remaining potential for runtime im-
provements of the dictionary searches lies in the feature descrip-
tor. As mentioned earlier the feature descriptor, so far, was not in
the focus of our experiments. Currently we use spin images with
153 bins which therefore are represented by 153 dimensional his-
tograms. We think that it is possible to increase the runtime per-
formance of the search in the dictionary if we reduce the dimen-
sionality of the feature descriptor. Whether that is true and how it
will affect the detection performance of our approach remains to
be analyzed in future experiments. Of course the overall search
time could also be decreased by reducing the amount of feature
descriptors which are computed.

The rating of the potential object positions is also a time consum-
ing step. As analyzed in Section 4.2.3 it could be improved by
reducing the value of the parameter σ but this will have a neg-
ative impact on the detection performance. Another way to de-
crease the runtime of this processing step is to reduce the amount
of votes casted. To achieve this either less words have to cast
votes or each word has to cast less votes. The first one could be
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achieved by computing feature descriptors for a smaller amount
of points. The second one could be achieved by modifying the
threshold for the clustering of similar votes of the same word
(Section 3.2.2). But the dictionary which we used for this exper-
iment has 163194 votes and 60000 words. Therefore on average
each word has 2.7 votes which probably could not be reduced
much further.

In the preprocessing the segmentation is the most time consum-
ing part. Unfortunately region growing is not an algorithm which
can easily be parallelized. Our implementation uses paralleliza-
tion but that comes at the cost that we have to deal with the fact
that sometimes the same segment is generated multiple times in
different threads. Such cases are detected but it still means that
parts of the region growing are unnecessarily done multiple times.

5. CONCLUSION AND FUTURE WORK

We have demonstrated that it is possible to detect persons in
the 3D point clouds acquired by a MLS system. Our approach
achieves a good runtime and consists of a preprocessing and a
detection step which uses implicit shape models. We have per-
formed an initial evaluation of the approach on a dataset which
was taken in an urban environment. In this evaluation we ex-
perimented with different parameters of the approach and have
analyzed their influence on the runtime and the detection perfor-
mance. For this we have determined precision and recall of the
different configurations. As part of an in-depth analysis of the
runtime, we used a configuration which offers a good compro-
mise between the runtime and detection performance. With this
configuration we achieved a runtime of 370ms, a precision of
0.68 and a recall of 0.76.

In future works we plan to perform a more comprehensive eval-
uation of our approach which includes the usage of benchmark
datasets. We plan to increase the performance of our approach
with various measures. One will be to increase the amount of
positive and negative training datasets. We assume this will in-
crease the overall precision and recall of the approach. Right
now the amount of used training datasets is very low which prob-
ably causes some problems in the area of generalization. We also
plan to evaluate different parameterizations of the spin image de-
scriptor which we currently use and to evaluate additional feature
descriptors.

Another task will be the in depth evaluation of our preprocessing.
As part of this we like to evaluate the removal of the segmen-
tation and the subsequent filtering step to work with the unseg-
mented point clouds. This will solve problems with under- or
over-segmentation of the data and saves the time which is needed
for the segmentation. Of course it will also increase the time
needed for the actual detection. To add a tracking component to
our approach which should help us to increase the performance in
both runtime and quality by keeping track of already detected per-
sons and to work with multiple sensors at once are also planned
for the future.
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